15 FN7778.1 August 15, 2011 I2C Serial Interface
鍙冩暩(sh霉)璩囨枡
鍨嬭櫉锛� ISL23315WFUZ-T7A
寤犲晢锛� Intersil
鏂囦欢闋佹暩(sh霉)锛� 7/20闋�
鏂囦欢澶�?銆�?/td> 0K
鎻忚堪锛� IC DGTL POT 256POS 10K 10MSOP
鐢�(ch菐n)鍝佸煿瑷�(x霉n)妯″锛� Solutions for Industrial Control Applications
妯�(bi膩o)婧�(zh菙n)鍖呰锛� 1
绯诲垪锛� XDCP™
鎺ョ墖锛� 256
闆婚樆锛堟瓙濮嗭級锛� 10k
闆昏矾鏁�(sh霉)锛� 1
婧害绯绘暩(sh霉)锛� 妯�(bi膩o)婧�(zh菙n)鍊� 175 ppm/°C
瀛樺劜鍣ㄩ鍨嬶細 鏄撳け
鎺ュ彛锛� I²C锛堣ō(sh猫)鍌欎綅鍧€锛�
闆绘簮闆诲锛� 1.2 V ~ 5.5 V锛�1.7 V ~ 5.5 V
宸ヤ綔婧害锛� -40°C ~ 125°C
瀹夎椤炲瀷锛� 琛ㄩ潰璨艰
灏佽/澶栨锛� 10-TFSOP锛�10-MSOP锛�0.118"锛�3.00mm 瀵級
渚涙噳(y墨ng)鍟嗚ō(sh猫)鍌欏皝瑁濓細 10-MSOP
鍖呰锛� 妯�(bi膩o)婧�(zh菙n)鍖呰
鍏跺畠鍚嶇ū锛� ISL23315WFUZ-T7ADKR
ISL23315
15
FN7778.1
August 15, 2011
I2C Serial Interface
The ISL23315 supports an I2C bidirectional bus oriented
protocol. The protocol defines any device that sends data onto
the bus as a transmitter and the receiving device as the receiver.
The device controlling the transfer is a master and the device
being controlled is the slave. The master always initiates data
transfers and provides the clock for both transmit and receive
operations. Therefore, the ISL23315 operates as a slave device
in all applications.
All communication over the I2C interface is conducted by sending
the MSB of each byte of data first.
Protocol Conventions
Data states on the SDA line must change only during SCL LOW
periods. SDA state changes during SCL HIGH are reserved for
indicating START and STOP conditions (see Figure 27). On
power-up of the ISL23315, the SDA pin is in the input mode.
All I2C interface operations must begin with a START condition,
which is a HIGH-to-LOW transition of SDA while SCL is HIGH. The
ISL23315 continuously monitors the SDA and SCL lines for the
START condition and does not respond to any command until this
condition is met (see Figure 27). A START condition is ignored
during the power-up of the device.
All I2C interface operations must be terminated by a STOP
condition, which is a LOW to HIGH transition of SDA while SCL is
HIGH (see Figure 27). A STOP condition at the end of a read
operation or at the end of a write operation places the device in
its standby mode.
An ACK (Acknowledge) is a software convention used to indicate
a successful data transfer. The transmitting device, either master
or slave, releases the SDA bus after transmitting eight bits.
During the ninth clock cycle, the receiver pulls the SDA line LOW
to acknowledge the reception of the eight bits of data
(see Figure 28).
The ISL23315 responds with an ACK after recognition of a START
condition followed by a valid Identification Byte, and once again
after successful receipt of an Address Byte. The ISL23315 also
responds with an ACK after receiving a Data Byte of a write
operation. The master must respond with an ACK after receiving
a Data Byte of a read operation.
A valid Identification Byte contains 10100 as the five MSBs, and
the following two bits matching the logic values present at pins
A1 and A0. The LSB is the Read/Write bit. Its value is 鈥�1鈥� for a
Read operation and 鈥�0鈥� for a Write operation (see Table 3).
TABLE 3. IDENTIFICATION BYTE FORMAT
FIGURE 26. SHUTDOWN MODE WIPER RESPONSE
POWER-UP
USER PROGRAMMED
MID SCALE = 80H
SHDN ACTIVATED SHDN RELEASED
AFTER SHDN
WIPE
R
VO
LT
AGE,
V
RW
(V
)
SHDN MODE
TIME (s)
WIPER RESTORE TO
THE ORIGINAL POSITION
0
10100
A1
A0
R/W
(MSB)
(LSB)
LOGIC VALUES AT PINS A1 AND A0, RESPECTIVELY
SDA
SCL
START
DATA
STOP
STABLE
CHANGE
DATA
STABLE
FIGURE 27. VALID DATA CHANGES, START AND STOP CONDITIONS
鐩搁棞(gu膩n)PDF璩囨枡
PDF鎻忚堪
DS1308U-18+T IC RTC 56BYTE NVRAM I2C 8UMAX
DS1339AU+T IC RTC I2C W/ALARM 8USOP
DS1307ZN+T&R/C02 IC RTC SERIAL IND 8-SOIC
VI-JNL-MZ CONVERTER MOD DC/DC 28V 25W
DS1302SN+T&R IC TIMEKEEPER T-CHARGE IND 8SOIC
鐩搁棞(gu膩n)浠g悊鍟�/鎶€琛�(sh霉)鍙冩暩(sh霉)
鍙冩暩(sh霉)鎻忚堪
ISL23315WFUZ-TK 鍔熻兘鎻忚堪:鏁�(sh霉)瀛楅浕浣嶈▓(j矛) IC 256 TAP VOLATILE I2C DL FL RNG DCP 10LD RoHS:鍚� 鍒堕€犲晢:Maxim Integrated 闆婚樆:200 Ohms 婧害绯绘暩(sh霉):35 PPM / C 瀹瑰樊:25 % POT 鏁�(sh霉)閲�:Dual 姣� POT 鍒嗘帴闋�:256 寮у埛瀛樺劜鍣�:Volatile 绶╂矕鍒�: 鏁�(sh霉)瀛楁帴鍙�:Serial (3-Wire, SPI) 鎻忚堪/鍔熻兘:Dual Volatile Low Voltage Linear Taper Digital Potentiometer 宸ヤ綔闆绘簮闆诲:1.7 V to 5.5 V 闆绘簮闆绘祦:27 uA 鏈€澶у伐浣滄韩搴�:+ 125 C 瀹夎棰�(f膿ng)鏍�:SMD/SMT 灏佽 / 绠遍珨:TQFN-16 灏佽:Reel
ISL23318TFRUZ-T7A 鍔熻兘鎻忚堪:鏁�(sh霉)瀛楅浕浣嶈▓(j矛) IC 128 TAPVOLATILE I2C SNG RNG IND DCP 10LD RoHS:鍚� 鍒堕€犲晢:Maxim Integrated 闆婚樆:200 Ohms 婧害绯绘暩(sh霉):35 PPM / C 瀹瑰樊:25 % POT 鏁�(sh霉)閲�:Dual 姣� POT 鍒嗘帴闋�:256 寮у埛瀛樺劜鍣�:Volatile 绶╂矕鍒�: 鏁�(sh霉)瀛楁帴鍙�:Serial (3-Wire, SPI) 鎻忚堪/鍔熻兘:Dual Volatile Low Voltage Linear Taper Digital Potentiometer 宸ヤ綔闆绘簮闆诲:1.7 V to 5.5 V 闆绘簮闆绘祦:27 uA 鏈€澶у伐浣滄韩搴�:+ 125 C 瀹夎棰�(f膿ng)鏍�:SMD/SMT 灏佽 / 绠遍珨:TQFN-16 灏佽:Reel
ISL23318TFRUZ-TK 鍔熻兘鎻忚堪:鏁�(sh霉)瀛楅浕浣嶈▓(j矛) IC 128 TAP VOLATILE I2C SINGLE FL DCP 10LD RoHS:鍚� 鍒堕€犲晢:Maxim Integrated 闆婚樆:200 Ohms 婧害绯绘暩(sh霉):35 PPM / C 瀹瑰樊:25 % POT 鏁�(sh霉)閲�:Dual 姣� POT 鍒嗘帴闋�:256 寮у埛瀛樺劜鍣�:Volatile 绶╂矕鍒�: 鏁�(sh霉)瀛楁帴鍙�:Serial (3-Wire, SPI) 鎻忚堪/鍔熻兘:Dual Volatile Low Voltage Linear Taper Digital Potentiometer 宸ヤ綔闆绘簮闆诲:1.7 V to 5.5 V 闆绘簮闆绘祦:27 uA 鏈€澶у伐浣滄韩搴�:+ 125 C 瀹夎棰�(f膿ng)鏍�:SMD/SMT 灏佽 / 绠遍珨:TQFN-16 灏佽:Reel
ISL23318TFUZ 鍔熻兘鎻忚堪:鏁�(sh霉)瀛楅浕浣嶈▓(j矛) IC 128 TAP VOLATILE I2C SINGLE FL DCP 10LD RoHS:鍚� 鍒堕€犲晢:Maxim Integrated 闆婚樆:200 Ohms 婧害绯绘暩(sh霉):35 PPM / C 瀹瑰樊:25 % POT 鏁�(sh霉)閲�:Dual 姣� POT 鍒嗘帴闋�:256 寮у埛瀛樺劜鍣�:Volatile 绶╂矕鍒�: 鏁�(sh霉)瀛楁帴鍙�:Serial (3-Wire, SPI) 鎻忚堪/鍔熻兘:Dual Volatile Low Voltage Linear Taper Digital Potentiometer 宸ヤ綔闆绘簮闆诲:1.7 V to 5.5 V 闆绘簮闆绘祦:27 uA 鏈€澶у伐浣滄韩搴�:+ 125 C 瀹夎棰�(f膿ng)鏍�:SMD/SMT 灏佽 / 绠遍珨:TQFN-16 灏佽:Reel
ISL23318TFUZ-T7A 鍔熻兘鎻忚堪:鏁�(sh霉)瀛楅浕浣嶈▓(j矛) IC 128 TAPVOLATILE I2C SNG RNG IND DCP 10LD RoHS:鍚� 鍒堕€犲晢:Maxim Integrated 闆婚樆:200 Ohms 婧害绯绘暩(sh霉):35 PPM / C 瀹瑰樊:25 % POT 鏁�(sh霉)閲�:Dual 姣� POT 鍒嗘帴闋�:256 寮у埛瀛樺劜鍣�:Volatile 绶╂矕鍒�: 鏁�(sh霉)瀛楁帴鍙�:Serial (3-Wire, SPI) 鎻忚堪/鍔熻兘:Dual Volatile Low Voltage Linear Taper Digital Potentiometer 宸ヤ綔闆绘簮闆诲:1.7 V to 5.5 V 闆绘簮闆绘祦:27 uA 鏈€澶у伐浣滄韩搴�:+ 125 C 瀹夎棰�(f膿ng)鏍�:SMD/SMT 灏佽 / 绠遍珨:TQFN-16 灏佽:Reel