Internet Data Sheet
Rev. 1.0, 2007-07
07242007-LR08-OZC0
21
HYS72T1G242EP–[25F/2.5/3/3S/3.7]–C
Registerd DDR2 SDRAM Module
TABLE 16
DRAM Component Timing Parameter by Speed Grade - DDR2–667
33) When the device is operated with input clock jitter, this parameter needs to be derated by the actual
t
JIT.PER
of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has
t
JIT.PER.MIN
= – 72 ps
and
t
JIT.PER.MAX
= + 93 ps, then
t
=
t
+
t
= 0.9 x
t
– 72 ps = + 2178 ps and
t
RPRE.MAX(DERATED)
=
t
RPRE.MAX
+
t
JIT.PER.MAX
t
CK.AVG
+ 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).
34) When the device is operated with input clock jitter, this parameter needs to be derated by the actual
t
of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has
t
JIT.DUTY.MIN
= – 72 ps
and
t
JIT.DUTY.MAX
= + 93 ps, then
t
=
t
+
t
= 0.4 x
t
– 72 ps = + 928 ps and
t
RPST.MAX(DERATED)
=
t
RPST.MAX
+
t
JIT.DUTY.MAX
t
CK.AVG
+ 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).
35) For these parameters, the DDR2 SDRAM device is characterized and verified to support
t
= RU{
t
PARAM
/
t
CK.AVG
}, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support
t
nRP
t
}, which is in
clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which
t
RP
= 15 ns, the device will support
t
= RU{
t
/
t
} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at
Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter.
36)
t
WTR
is at lease two clocks (2 x
t
CK
) independent of operation frequency.
Parameter
Symbol
DDR2–667
Unit
Notes
1)2)3)4)5)6)
7)8)
Min.
Max.
DQ output access time from CK / CK
CAS to CAS command delay
Average clock high pulse width
Average clock period
CKE minimum pulse width ( high and low pulse
width)
Average clock low pulse width
Auto-Precharge write recovery + precharge time
Minimum time clocks remain ON after CKE
asynchronously drops LOW
DQ and DM input hold time
DQ and DM input pulse width for each input
DQS output access time from CK / CK
DQS input high pulse width
DQS input low pulse width
DQS-DQ skew for DQS & associated DQ signals
t
DQSQ
DQS latching rising transition to associated clock
edges
DQ and DM input setup time
DQS falling edge hold time from CK
DQS falling edge to CK setup time
Four Activate Window for 1KB page size products
t
FAW
Four Activate Window for 2KB page size products
t
FAW
CK half pulse width
t
AC
t
CCD
t
CH.AVG
t
CK.AVG
t
CKE
–450
2
0.48
3000
3
+450
—
0.52
8000
—
ps
nCK
t
CK.AVG
ps
nCK
9)
10)11)
12)
t
CL.AVG
t
DAL
t
DELAY
0.48
WR +
t
nRP
t
IS
+
t
CK .AVG
+
t
IH
175
0.35
–400
0.35
0.35
—
– 0.25
0.52
—
––
t
CK.AVG
nCK
ns
10)11)
13)14)
t
DH.BASE
t
DIPW
t
DQSCK
t
DQSH
t
DQSL
––
—
+400
—
—
240
+ 0.25
ps
t
CK.AVG
ps
t
CK.AVG
t
CK.AVG
ps
t
CK.AVG
19)20)15)
9)
16)
t
DQSS
17)
t
DS.BASE
t
DSH
t
DSS
100
0.2
0.2
37.5
50
Min(
t
CH.ABS
,
t
CL.ABS
)
—
275
––
—
—
—
—
__
ps
t
CK.AVG
t
CK.AVG
ns
ns
ps
18)19)20)
17)
17)
35)
35)
t
HP
21)
Data-out high-impedance time from CK / CK
Address and control input hold time
t
HZ
t
IH.BASE
t
AC.MAX
—
ps
ps
9)22)
25)23)