2-289
MOSFET switching. The over-current function will trip at a peak
inductor current (I
PEAK)
determined by:
The OC trip point varies with MOSFET’s rDS(ON)
temperature variations. To avoid over-current tripping in the
normal operating load range, determine the ROCSET
resistor value from the equation above with:
1. The maximum r
DS(ON)
at the highest junction temperature
2. The minimum I
OCSET
from the specification table
3. Determine I
PEAK
for I
PEAK
> I
OUT(MAX)
+ (
I)/2,
where
I is the output inductor ripple current.
For an equation for the ripple current see the section under
component guidelines titled ‘Output Inductor Selection’.
OUT1 Voltage Program
The output voltage of the PWM1 converter is programmed to
discrete levels between 1.3V
DC
and 3.5V
DC
. This output
(OUT1) is designed to supply the core voltage of Intel’s
advanced microprocessors. The voltage identification (VID)
pins program an internal voltage reference (DACOUT) with a
TTL-compatible 5-bit digital-to-analog converter (DAC). The
level of DACOUT also sets the PGOOD and OVP thresholds.
Table 1 specifies the DACOUT voltage for the different
combinations of connections on the VID pins. The VID pins
can be left open for a logic 1 input, because they are internally
pulled up to an internal voltage of about 5V by a 10
μ
A current
source. Changing the VID inputs during operation is not
recommended and could toggle the PGOOD signal and
exercise the over-voltage protection. ‘11111’ VID pin
combination disables the IC and opens the PGOOD pin.
OUT2 Voltage Selection
The AGP regulator output voltage is internally set to one of
two discrete levels, based on the status of the SELECT pin.
SELECT pin is internally pulled ‘high’, such that left open,
the AGP output voltage is by default set to 3.3V. The other
discrete setting available is 1.5V, which can be obtained by
grounding the SELECT pin using a jumper or another
suitable method capable of sinking a few tens of
microamperes. The status of the SELECT pin cannot be
changed during operation of the IC without immediately
causing a fault condition.
Application Guidelines
Soft-Start Interval
Initially,thesoft-startfunctionclampstheerroramplifier’soutput
of the PWM converters. This generates PHASE pulses of
increasing width that charge the output capacitor(s). After the
output voltage increases to approximately 70% of the set value,
the reference input of the error amplifier is clamped to a voltage
proportionaltotheSSpinvoltage.Theresultingoutputvoltages
start-up as shown in Figure 6.
The soft-start function controls the output voltage rate of rise
to limit the current surge at start-up. The soft-start interval
and the surge current are programmed by the soft-start
capacitor, C
SS
. Programming a faster soft-start interval
I
PEAK
=
I
---------------------------------------------------
R
×
DS ON
)
TABLE 1. OUT1 VOLTAGE PROGRAM
PIN NAME
NOMINAL
DACOUT
VOLTAGE
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
VID4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID3
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
VID2
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
VID1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
NOTE: 0 = connected to GND, 1 = open or connected to 5V through
pull-up resistors
HIP6020