參數(shù)資料
型號: HC5526
廠商: Intersil Corporation
英文描述: ITU CO/PABX SLIC with Low Power Standby(用戶線接口電路(SLIC))
中文描述: 國際電聯(lián)合作/交換機(jī)用戶接口的低功耗待機(jī)(用戶線接口電路電路(SLIC))
文件頁數(shù): 15/19頁
文件大?。?/td> 234K
代理商: HC5526
15
11. Two-WireReturnLoss.
The 2-wire return loss is computed
using the following equation:
r = -20
log (2V
M
/V
S
),
where: Z
D
= The desired impedance; e.g., the characteristic
impedance of the line, nominally 600
.
(Reference Figure 6).
12. OverloadLevel(4-Wireport).
The overload level is specified at
the 4-wire transmit port (V
TXO
) with the signal source (E
G
) at
the 2-wire port, I
DCMET
= 23mA, Z
L
= 20k
(Reference Figure
7). Increase the amplitude of E
G
until 1% THD is measured at
V
TXO
. Note that the gain from the 2-wire port to the 4-wire port
is equal to 1.
13. OutputOffsetVoltage.
The output offset voltage is specified
with the following conditions: E
G
= 0, I
DCMET
= 23mA, Z
L
=
and is measured at V
TX
. E
G
, I
DCMET
, V
TX
and Z
L
are defined
in Figure 7. Note: I
DCMET
is established with a series 600
resistor between tip and ring.
14. Two-Wire to Four-Wire (Metallic to VTX) Voltage Gain.
The 2-
wire to 4-wire (metallic to V
TX
) voltage gain is computed using
the following equation.
G
2-4
= (V
TX
/V
TR
), E
G
= 0dBm0, V
TX
, V
TR
, and E
G
are defined
in Figure 7.
15. Current Gain RSN to Metallic.
ThecurrentgainRSNtoMetallicis
computed using the following equation:
K = I
M
[(R
DC1
+ R
DC2
)/(V
RDC
- V
RSN
)]
V
RDC
and V
RSN
are defined in Figure 8.
K, I
M
, R
DC1
, R
DC2
,
16. Two-Wire to Four-Wire Frequency Response.
The2-wireto4-
wire frequency response is measured with respect to E
G
= 0dBm at
1.0kHz, E
RX
= 0V, I
DCMET
= 23mA. The frequency response is
computed using the following equation:
F
2-4
=20
log(V
TX
/V
TR
),varyfrequencyfrom300Hzto3.4kHz
and compare to 1kHz reading.
V
TX
, V
TR
, and E
G
are defined in Figure 9.
17. Four-Wire to Two-Wire Frequency Response.
The
2-wire frequency response is measured with respect to
E
RX
= 0dBm at 1.0kHz, E
G
= 0V, I
DCMET
= 23mA. The
frequency response is computed using the following equation:
4-wire
to
F
4-2
=20
log(V
TR
/E
RX
),varyfrequencyfrom300Hzto3.4kHz
and compare to 1kHz reading.
V
TR
and E
RX
are defined in Figure 9.
18. Four-Wire to Four-Wire Frequency Response.
The 4-wire to
4-wire frequency response is measured with respect to
E
RX
= 0dBm at 1.0kHz, E
G
= 0V, I
DCMET
= 23mA. The
frequency response is computed using the following equation:
F
4-4
=20
log(V
TX
/E
RX
),varyfrequencyfrom300Hzto3.4kHz
and compare to 1kHz reading.
V
TX
and E
RX
are defined in Figure 9.
19. Two-Wire to Four-Wire Insertion Loss.
The 2-wire to 4-wire
insertion loss is measured with respect to E
G
= 0dBm at 1.0kHz
input signal, E
RX
= 0, I
DCMET
= 23mA and is computed using
the following equation:
L
2-4
= 20
log (V
TX
/V
TR
).
where: V
TX
, V
TR
, and E
G
are defined in Figure 9. (Note: The
fuse resistors, R
F
, impact the insertion loss. The specified
insertion loss is for R
F
= 0).
20. Four-Wire to Two-Wire Insertion Loss.
The 4-wire to 2-wire
insertion loss is measured based upon E
RX
= 0dBm, 1.0kHz
input signal, E
G
= 0, I
DCMET
= 23mA and is computed using
the following equation:
L
4-2
= 20
log (V
TR
/E
RX
).
where: V
TR
and E
RX
are defined in Figure 9.
21. Two-Wire to Four-Wire Gain Tracking.
The 2-wire to 4-wire
gain tracking is referenced to measurements taken for
E
G
= -10dBm, 1.0kHz signal, E
RX
= 0, I
DCMET
= 23mA and is
computed using the following equation.
G
2-4
= 20
log (V
TX
/V
TR
) vary amplitude -40dBm to +3dBm,
or -55dBm to -40dBm and compare to -10dBm reading.
V
TX
and V
TR
are defined in Figure 9.
22. Four-Wire to Two-Wire Gain Tracking.
The4-wireto2-wiregain
tracking
is
referenced
to
E
RX
= -10dBm, 1.0kHz signal, E
G
= 0, I
DCMET
= 23mA and is
computed using the following equation:
measurements
taken
for
G
4-2
= 20
log (V
TR
/E
RX
) vary amplitude -40dBm to +3dBm,
or -55dBm to -40dBm and compare to -10dBm reading.
V
TR
and E
RX
are defined in Figure 9. The level is specified at the
4-wire receive port and referenced to a 600
impedance level.
23. Two-WireIdleChannelNoise.
The 2-wire idle channel noise at
V
TR
is specified with the 2-wire port terminated in 600
(R
L
)
and with the 4-wire receive port grounded (Reference
Figure 10).
24. Four-WireIdleChannelNoise.
The 4-wire idle channel noise at
V
TX
is specified with the 2-wire port terminated in 600
(R
L
).
The noise specification is with respect to a 600
impedance
level at V
TX
. The 4-wire receive port is grounded (Reference
Figure 10).
25. Harmonic Distortion (2-Wire to 4-Wire).
The
distortion is measured with the following conditions. E
G
= 0dBm
at 1kHz, I
DCMET
= 23mA. Measurement taken at V
TX
.
(Reference Figure 7).
harmonic
26. Harmonic Distortion (4-Wire to 2-Wire).
The
distortion is measured with the following conditions. E
RX
=
0dBm0. Vary frequency between 300Hz and 3.4kHz, I
DCMET
=
23mA. Measurement taken at V
TR
. (Reference Figure 9).
harmonic
27. ConstantLoopCurrent.
The constant loop current is calculated
using the following equation:
I
L
= 2500 / (R
DC1
+ R
DC2
).
28. StandbyStateLoopCurrent.
The standby state loop current is
calculated using the following equation:
I
L
= [|V
BAT
| - 3] / [R
L
+1800], T
A
= 25
o
C.
29. GroundKeyDetector.
(TRIGGER) Increase the input current to
8mA and verify that DET goes low.
(RESET) Decrease the input current from 17mA to 3mA and
verify that DET goes high.
(Hysteresis) Compare difference between trigger and reset.
30. PowerSupplyRejectionRatio.
Inject
(50Hz to 4kHz) on V
BAT
, V
CC
and V
EE
supplies. PSRR is
computed using the following equation:
a
100mV
RMS
signal
PSRR = 20
log (V
TX
/V
IN
). V
TX
and V
IN
are defined in
Figure 12.
HC5526
相關(guān)PDF資料
PDF描述
HC5549CM Low Power SLIC with Battery Switch
HC5549IM THERMISTOR PTC1KOHM 70 DEG 0805
HC5549 Low Power SLIC with Battery Switch(用戶線接口電路)
HC573 Octal 3-State Noninverting Transparent Latch(High-Performance Silicon-Gate CMOS)
HC595 8-Bit Serial-Input/Serial or Parallel-Output Shift Register with Latched 3-State Outputs
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
HC5526_03 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:ITU CO/PABX SLIC with Low Power Standby
HC55261P 制造商:Rochester Electronics LLC 功能描述:- Bulk
HC5526CM 制造商:Rochester Electronics LLC 功能描述:COST CO/PBX SLIC,54DB LONG BAL,28PLC - Bulk
HC5526CM96 制造商:Rochester Electronics LLC 功能描述:- Bulk
HC5526CP 制造商:Rochester Electronics LLC 功能描述:DIGITAL LOOP CARRIER SLIC - Bulk