10 FN7343.5 August 28, 2012 The bandwidth of the EL5176 depends on the load and the feedback network. R
參數(shù)資料
型號(hào): EL5176IY
廠商: Intersil
文件頁(yè)數(shù): 2/12頁(yè)
文件大小: 0K
描述: IC DRVR DIFF 250MHZ TP 10-MSOP
標(biāo)準(zhǔn)包裝: 50
放大器類型: 差分
電路數(shù): 1
輸出類型: 差分
轉(zhuǎn)換速率: 800 V/µs
增益帶寬積: 100MHz
-3db帶寬: 250MHz
電流 - 輸入偏壓: 6µA
電壓 - 輸入偏移: 1500µV
電流 - 電源: 7.5mA
電流 - 輸出 / 通道: 50mA
電壓 - 電源,單路/雙路(±): 4.75 V ~ 11 V,±2.38 V ~ 5.5 V
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 10-TFSOP,10-MSOP(0.118",3.00mm 寬)
供應(yīng)商設(shè)備封裝: 10-MSOP
包裝: 管件
EL5176
10
FN7343.5
August 28, 2012
The bandwidth of the EL5176 depends on the load and the
feedback network. RF and RG appear in parallel with the load for
gains other than +1. As this combination gets smaller, the
bandwidth falls off. Consequently, RF also has a minimum value
that should not be exceeded for optimum bandwidth
performance. For gain of +1, RF = 0 is optimum. For the gains
other than +1, optimum response is obtained with RF between
500 to 1k.
The EL5176 has a gain bandwidth product of 100MHz for
RLD =1k. For gains ≥5, its bandwidth can be predicted by
Equation 2:
Driving Capacitive Loads and Cables
The EL5176 can drive a 50pF differential capacitor in parallel with
1k differential load with less than 5dB of peaking at a gain of +1.
If less peaking is desired in applications, a small series resistor
(usually between 5 to 50) can be placed in series with each
output to eliminate most peaking. However, this will reduce the
gain slightly. If the gain setting is greater than 1, the gain resistor
RG can then be chosen to make up for any gain loss, which may be
created by the additional series resistor at the output.
When used as a cable driver, double termination is always
recommended for reflection-free performance. For those
applications, a back-termination series resistor at the amplifier's
output will isolate the amplifier from the cable and allow
extensive capacitive drive. However, other applications may have
high capacitive loads without a back-termination resistor. Again,
a small series resistor at the output can help to reduce peaking.
Disable/Power-Down
The EL5176 can be disabled and its outputs placed in a high
impedance state. The turn-off time is about 0.95s and the turn-
on time is about 215ns. When disabled, the amplifier's supply
current is reduced to 1.7A for IS+ and 120A for IS- typically,
thereby effectively eliminating the power consumption. The
amplifier's power-down can be controlled by standard CMOS
signal levels at the ENABLE pin. The applied logic signal is
relative to VS+ pin. Letting the EN pin float or applying a signal
that is less than 1.5V below VS+ will enable the amplifier. The
amplifier will be disabled when the signal at the EN pin is above
VS+ - 0.5V.
Output Drive Capability
The EL5176 has internal short circuit protection. Its typical short
circuit current is ±40mA for EL5176. If the output is shorted
indefinitely, the power dissipation could easily increase such that
the part will be destroyed. Maximum reliability is maintained if
the output current never exceeds ±40mA. This limit is set by the
design of the internal metal interconnect.
Power Dissipation
With the high output drive capability of the EL5176, it is possible
to exceed the +135°C absolute maximum junction temperature
under certain load current conditions. Therefore, it is important
to calculate the maximum junction temperature for the
application to determine if the load conditions or package types
need to be modified for the amplifier to remain in the safe
operating area.
The maximum power dissipation allowed in a package is
determined according to Equation 3:
Where:
TJMAX = Maximum junction temperature
TAMAX = Maximum ambient temperature
θJA = Thermal resistance of the package
The maximum power dissipation actually produced by an IC is
the total quiescent supply current times the total power supply
voltage, plus the power in the IC due to the load, or as expressed
in Equation 4:
Where:
VSTOT = Total supply voltage = VS+ - VS-
ISMAX = Maximum quiescent supply current per channel
ΔVO = Maximum differential output voltage of the application
RLD = Differential load resistance
ILOAD = Load current
i = Number of channels
By setting the two PDMAX equations equal to each other, we can
solve the output current and RLD to avoid the device overheat.
Power Supply Bypassing and Printed Circuit
Board Layout
As with any high frequency device, a good printed circuit board
layout is necessary for optimum performance. Lead lengths
should be as short as possible. The power supply pin must be
well bypassed to reduce the risk of oscillation. For normal single
supply operation, where the VS- pin is connected to the ground
plane, a single 4.7F tantalum capacitor in parallel with a 0.1F
ceramic capacitor from VS+ to GND will suffice. This same
capacitor combination should be placed at each supply pin to
ground if split supplies are to be used. In this case, the VS- pin
becomes the negative supply rail.
For good AC performance, parasitic capacitance should be kept
to a minimum. Use of wire-wound resistors should be avoided
because of their additional series inductance. Use of sockets
should also be avoided if possible. Sockets add parasitic
inductance and capacitance that can result in compromised
performance. Minimizing parasitic capacitance at the amplifier's
inverting input pin is very important. The feedback resistor
should be placed very close to the inverting input pin. Strip line
design techniques are recommended for the signal traces.
As the signal is transmitted through a cable, the high frequency
signal will be attenuated. One way to compensate this loss is to
boost the high frequency gain at the receiver side.
Gain
BW
100MHz
=
×
(EQ. 2)
PD
MAX
T
JMAX
T
AMAX
Θ
JA
---------------------------------------------
=
(EQ. 3)
(EQ. 4)
PD
i
V
STOT
I
SMAX
×
V
(
STOT
ΔV
O )
ΔV
O
R
LD
------------
×
+
×
=
相關(guān)PDF資料
PDF描述
AD8039AR-REEL7 IC OPAMP VF DUAL LP LN 8SOIC
EL5175IY IC LINE RCVR 550MHZ SGL 8-MSOP
EL5175IS IC LINE RCVR 550MHZ SGL 8-SOIC
AD8278BRMZ-RL IC OPAMP DIFFERENTIAL 8MSOP
NPPN152FFKS-RC CONN RECEPT 2MM DUAL SMD 30POS
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
EL5176IY-T13 功能描述:IC DRIVER TWISTED 250MHZ 10-MSOP RoHS:否 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標(biāo)準(zhǔn)包裝:50 系列:- 放大器類型:通用 電路數(shù):2 輸出類型:滿擺幅 轉(zhuǎn)換速率:1.8 V/µs 增益帶寬積:6.5MHz -3db帶寬:4.5MHz 電流 - 輸入偏壓:5nA 電壓 - 輸入偏移:100µV 電流 - 電源:65µA 電流 - 輸出 / 通道:35mA 電壓 - 電源,單路/雙路(±):1.8 V ~ 5.25 V,±0.9 V ~ 2.625 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:10-TFSOP,10-MSOP(0.118",3.00mm 寬) 供應(yīng)商設(shè)備封裝:10-MSOP 包裝:管件
EL5176IY-T7 功能描述:IC DRIVER DIFF 250MHZ TP 10-MSOP RoHS:否 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標(biāo)準(zhǔn)包裝:1,000 系列:- 放大器類型:電壓反饋 電路數(shù):4 輸出類型:滿擺幅 轉(zhuǎn)換速率:33 V/µs 增益帶寬積:20MHz -3db帶寬:30MHz 電流 - 輸入偏壓:2nA 電壓 - 輸入偏移:3000µV 電流 - 電源:2.5mA 電流 - 輸出 / 通道:30mA 電壓 - 電源,單路/雙路(±):4.5 V ~ 16.5 V,±2.25 V ~ 8.25 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:14-SOIC(0.154",3.90mm 寬) 供應(yīng)商設(shè)備封裝:14-SOIC 包裝:帶卷 (TR)
EL5176IYZ 功能描述:差分放大器 EL5176IYZ 200MHZ DIF DRVR EXTRA CONNECT RoHS:否 制造商:Texas Instruments 通道數(shù)量:1 Channel 帶寬:2.4 GHz 可用增益調(diào)整:6 dB to 26 dB 輸入補(bǔ)償電壓: 共模抑制比(最小值):- 40 dB 工作電源電壓:4.75 V to 5.25 V 電源電流:100 mA 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:WQFN-24 封裝:Reel
EL5176IYZ-T13 功能描述:差分放大器 EL5176IYZ 200MHZ DIF DRVR EXTRA CONNECT RoHS:否 制造商:Texas Instruments 通道數(shù)量:1 Channel 帶寬:2.4 GHz 可用增益調(diào)整:6 dB to 26 dB 輸入補(bǔ)償電壓: 共模抑制比(最小值):- 40 dB 工作電源電壓:4.75 V to 5.25 V 電源電流:100 mA 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:WQFN-24 封裝:Reel
EL5176IYZ-T7 功能描述:差分放大器 EL5176IYZ 200MHZ DIF DRVR EXTRA CONNECT RoHS:否 制造商:Texas Instruments 通道數(shù)量:1 Channel 帶寬:2.4 GHz 可用增益調(diào)整:6 dB to 26 dB 輸入補(bǔ)償電壓: 共模抑制比(最小值):- 40 dB 工作電源電壓:4.75 V to 5.25 V 電源電流:100 mA 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:WQFN-24 封裝:Reel