卤5ppm, I2C Real-Time Clock 13 Maxim Integrated DS3231M Control Register (0Eh) BI" />
鍙冩暩(sh霉)璩囨枡
鍨嬭櫉锛� DS3231MZ+
寤犲晢锛� Maxim Integrated Products
鏂囦欢闋佹暩(sh霉)锛� 5/20闋�
鏂囦欢澶у皬锛� 0K
鎻忚堪锛� IC RTC I2C 8SOIC
鐢�(ch菐n)鍝佸煿瑷�(x霉n)妯″锛� Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
妯�(bi膩o)婧�(zh菙n)鍖呰锛� 100
椤炲瀷锛� 鏅傞悩/鏃ユ
鐗归粸锛� 璀﹀牨鍣�锛岄枏骞�锛屾柟娉㈣几鍑�
鏅傞枔鏍煎紡锛� HH:MM:SS锛�12/24 灏忔檪锛�
鏁�(sh霉)鎿�(j霉)鏍煎紡锛� YY-MM-DD-dd
鎺ュ彛锛� I²C锛�2 绶氫覆鍙�
闆绘簮闆诲锛� 2.3 V ~ 5.5 V
闆诲 - 闆绘簮锛岄浕姹狅細 2.3 V ~ 5.5 V
宸ヤ綔婧害锛� -40°C ~ 85°C
瀹夎椤炲瀷锛� 琛ㄩ潰璨艰
灏佽/澶栨锛� 8-SOIC锛�0.154"锛�3.90mm 瀵級
渚涙噳(y墨ng)鍟嗚ō(sh猫)鍌欏皝瑁濓細 8-SOIC
鍖呰锛� 绠′欢
卤5ppm, I2C Real-Time Clock
13
Maxim Integrated
DS3231M
Control Register (0Eh)
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
EOSC
BBSQW
CONV
NA
INTCN
A2IE
A1IE
0
1
0
BIT 7
EOSC: Enable oscillator. When set to logic 0, the oscillator is started. When set to logic 1, the oscillator is
stopped when the device switches to VBAT. This bit is clear (logic 0) when power is first applied. When the
device is powered by VCC, the oscillator is always on regardless of the status of the EOSC bit. When the oscil-
lator is disabled, all register data is static.
BIT 6
BBSQW: Battery-backed square-wave enable. When set to logic 1 with INTCN = 0 and VCC < VPF, this bit
enables the 1Hz square wave. When BBSQW is logic 0, INT/SQW goes high impedance when VCC falls below
VPF. This bit is disabled (logic 0) when power is first applied.
BIT 5
CONV: Convert temperature. Setting this bit to 1 forces the temperature sensor to convert the temperature
into digital code and execute the temperature compensate algorithm to update the oscillator鈥檚 accuracy. The
device cannot be forced to execute the temperature-compensate algorithm faster than once per second. A
user-initiated temperature conversion does not affect the internal update cycle. The CONV bit remains at a 1
from the time it is written until the temperature conversion is completed, at which time both CONV and BSY go
to 0. The CONV bit should be used when monitoring the status of a user-initiated conversion. See Figure 7 for
more details.
BITS 4:3
NA: Not applicable. These bits have no affect on the device and can be set to either 0 or 1.
BIT 2
INTCN: Interrupt control. This bit controls the INT/SQW output signal. When the INTCN bit is set to logic 0, a
1Hz square wave is output on INT/SQW. When the INTCN bit is set to logic 1, a match between the timekeep-
ing registers and either of the alarm registers activates the INT/SQW output (if the alarm is also enabled). The
corresponding alarm flag is always set regardless of the state of the INTCN bit. The INTCN bit is set to a logic
1 when power is first applied.
BIT 1
A2IE: Alarm 2 interrupt enable. When set to logic 1, this bit permits the alarm 2 flag (A2F) bit in the status reg-
ister to assert INT/SQW (when INTCN = 1). When the A2IE bit is set to logic 0 or INTCN is set to logic 0, the
A2F bit does not initiate an interrupt signal. The A2IE bit is disabled (logic 0) when power is first applied.
BIT 0
A1IE: Alarm 1 interrupt enable. When set to logic 1, this bit permits the alarm 1 flag (A1F) bit in the status reg-
ister to assert INT/SQW (when INTCN = 1). When the A1IE bit is set to logic 0 or INTCN is set to logic 0, the
A1F bit does not initiate an interrupt signal. The A1IE bit is disabled (logic 0) when power is first applied
.
鐩搁棞(gu膩n)PDF璩囨枡
PDF鎻忚堪
DS3231SN#T&R IC RTC W/TCXO 16-SOIC
DS3232MZ+ IC RTC W/SRAM I2C 8SOIC
DS3232SN#T&R IC RTC W/TCXO 20-SOIC
DS3234S# IC RTC W/TCXO 20-SOIC
DS32C35-33#T&R IC RTC ACCURATE I2C 3.3V 20-SOIC
鐩搁棞(gu膩n)浠g悊鍟�/鎶€琛�(sh霉)鍙冩暩(sh霉)
鍙冩暩(sh霉)鎻忚堪
DS3231MZ/V+ 鍔熻兘鎻忚堪:瀵︽檪鏅傞悩 TRC/TCMO MEMS 8L RoHS:鍚� 鍒堕€犲晢:Microchip Technology 鍔熻兘:Clock, Calendar. Alarm RTC 绺界窔鎺ュ彛:I2C 鏃ユ湡鏍煎紡:DW:DM:M:Y 鏅傞枔鏍煎紡:HH:MM:SS RTC 瀛樺劜瀹归噺:64 B 闆绘簮闆诲-鏈€澶�:5.5 V 闆绘簮闆诲-鏈€灏�:1.8 V 鏈€澶у伐浣滄韩搴�:+ 85 C 鏈€灏忓伐浣滄韩搴�: 瀹夎棰�(f膿ng)鏍�:Through Hole 灏佽 / 绠遍珨:PDIP-8 灏佽:Tube
DS3231MZ/V+T 鍔熻兘鎻忚堪:瀵︽檪鏅傞悩 TRC/TCMO MEMS 8L RoHS:鍚� 鍒堕€犲晢:Microchip Technology 鍔熻兘:Clock, Calendar. Alarm RTC 绺界窔鎺ュ彛:I2C 鏃ユ湡鏍煎紡:DW:DM:M:Y 鏅傞枔鏍煎紡:HH:MM:SS RTC 瀛樺劜瀹归噺:64 B 闆绘簮闆诲-鏈€澶�:5.5 V 闆绘簮闆诲-鏈€灏�:1.8 V 鏈€澶у伐浣滄韩搴�:+ 85 C 鏈€灏忓伐浣滄韩搴�: 瀹夎棰�(f膿ng)鏍�:Through Hole 灏佽 / 绠遍珨:PDIP-8 灏佽:Tube
DS3231MZ+ 鍔熻兘鎻忚堪:瀵︽檪鏅傞悩 5+/-ppm RTC RoHS:鍚� 鍒堕€犲晢:Microchip Technology 鍔熻兘:Clock, Calendar. Alarm RTC 绺界窔鎺ュ彛:I2C 鏃ユ湡鏍煎紡:DW:DM:M:Y 鏅傞枔鏍煎紡:HH:MM:SS RTC 瀛樺劜瀹归噺:64 B 闆绘簮闆诲-鏈€澶�:5.5 V 闆绘簮闆诲-鏈€灏�:1.8 V 鏈€澶у伐浣滄韩搴�:+ 85 C 鏈€灏忓伐浣滄韩搴�: 瀹夎棰�(f膿ng)鏍�:Through Hole 灏佽 / 绠遍珨:PDIP-8 灏佽:Tube
DS3231MZ+TRL 鍔熻兘鎻忚堪:瀵︽檪鏅傞悩 5+/-ppm RTC RoHS:鍚� 鍒堕€犲晢:Microchip Technology 鍔熻兘:Clock, Calendar. Alarm RTC 绺界窔鎺ュ彛:I2C 鏃ユ湡鏍煎紡:DW:DM:M:Y 鏅傞枔鏍煎紡:HH:MM:SS RTC 瀛樺劜瀹归噺:64 B 闆绘簮闆诲-鏈€澶�:5.5 V 闆绘簮闆诲-鏈€灏�:1.8 V 鏈€澶у伐浣滄韩搴�:+ 85 C 鏈€灏忓伐浣滄韩搴�: 瀹夎棰�(f膿ng)鏍�:Through Hole 灏佽 / 绠遍珨:PDIP-8 灏佽:Tube
DS3231MZEVKIT# 鍔熻兘鎻忚堪:鏅傞悩鍜屽畾鏅傚櫒闁嬬櫦(f膩)宸ュ叿 Evaluation kit for t he +/-5ppm, I2C Real RoHS:鍚� 鍒堕€犲晢:Texas Instruments 鐢�(ch菐n)鍝�:Evaluation Modules 椤炲瀷:Clock Conditioners 宸ュ叿鐢ㄤ簬瑭曚及:LMK04100B 闋荤巼:122.8 MHz 宸ヤ綔闆绘簮闆诲:3.3 V