參數(shù)資料
型號(hào): CPC7594BBTR
廠商: CLARE INC
元件分類: 通信及網(wǎng)絡(luò)
中文描述: SPECIALTY TELECOM CIRCUIT, PDSO18
封裝: ROHS COMPLIANT, SOIC-18
文件頁(yè)數(shù): 9/20頁(yè)
文件大小: 596K
代理商: CPC7594BBTR
CPC7594
R03
www.clare.com
17
In order for the SCR to crowbar (or foldback), the
SCR’s on-voltage (see “Protection Circuitry Electrical
Specifications” on page 10) must be less than the
applied voltage at the VBAT pin. If the VBAT voltage is
less negative than the SCR on-voltage or if the VBAT
supply is unable to source the trigger current, the SCR
will not crowbar.
For power induction or power-cross fault conditions,
the positive cycle of the transient is clamped to a diode
drop above ground and the fault current directed to
ground. The negative cycle of the transient will cause
the SCR to conduct when the voltage exceeds the
VBAT reference voltage by two to four volts, steering
the fault current to ground.
Note: The CPC7594xB does not contain the
protection SCR but instead uses diodes to clamp both
polarities of a transient fault. These diodes direct the
negative potential’s fault current to the VBAT pin.
2.9.2 Current Limiting function
If a lightning strike transient occurs when the device is
in the talk state, the current is passed along the line to
the integrated protection circuitry and restricted by the
dynamic current limit response of the active switches.
During the talk state, when a 1000V 10x1000
μs
lightning pulse (GR-1089-CORE) is applied to the line
though a properly clamped external protector, the
current seen at TLINE and RLINE will be a pulse with a
typical magnitude of 2.5 A and a duration less than
0.5
μs.
If a power-cross fault occurs with the device in the talk
state, the current is passed though break switches
SW1 and SW2 on to the integrated protection circuit
but is limited by the dynamic DC current limit response
of the two break switches. The DC current limit
specified over temperature is between 80 mA and
425 mA and the circuitry has a negative temperature
coefficient. As a result, if the device is subjected to
extended heating due to a power cross fault condition,
the measured current at TLINE and RLINE will decrease
as the device temperature increases. If the device
temperature rises sufficiently, the temperature
shutdown mechanism will activate and the device will
enter the all-off state.
2.10 Thermal Shutdown
The thermal shutdown mechanism activates when the
device die temperature reaches a minimum of 110
° C,
placing the device in the all-off state regardless of
logic input. During thermal shutdown events the TSD
pin will output a logic low with a nominal 0 V level. A
logic high is output from the TSD pin during normal
operation with a typical output level equal to VDD.
If presented with a short duration transient such as a
lightning event, the thermal shutdown feature will
typically not activate. But in an extended power-cross
event, the device temperature will rise and the thermal
shutdown mechanism will activate forcing the switches
to the all-off state. At this point the current measured
into TLINE or RLINE will drop to zero. Once the device
enters thermal shutdown it will remain in the all-off
state until the temperature of the device drops below
the de-activation level of the thermal shutdown circuit.
This permits the device to autonomously return to
normal operation. If the transient has not passed,
current will again flow up to the value allowed by the
dynamic DC current limiting of the switches and
heating will resume, reactivating the thermal shutdown
mechanism. This cycle of entering and exiting the
thermal shutdown mode will continue as long as the
fault condition persists. If the magnitude of the fault
condition is great enough, the external secondary
protector will activate shunting the fault current to
ground.
2.11 External Protection Elements
The CPC7594 requires only over voltage secondary
protection on the loop side of the device. The
integrated protection feature described above negates
the need for additional external protection on the SLIC
side. The secondary protector must limit voltage
transients to levels that do not exceed the breakdown
voltage or input-output isolation barrier of the
CPC7594. A foldback or crowbar type protector is
recommended to minimize stresses on the CPC7594.
Consult Clare’s application note, AN-100, “Designing
to the specifications of external secondary protectors,
fused resistors and PTCs.
相關(guān)PDF資料
PDF描述
CPC7594MC
CPC7691BA
CPC7691BATR
CPC7691BB
CPC7691BBTR
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
CPC7594BC 功能描述:固態(tài)繼電器-PCB安裝 6-pole, high hold current, SOIC LCAS RoHS:否 制造商:Omron Electronics 控制電壓范圍: 負(fù)載電壓額定值:40 V 負(fù)載電流額定值:120 mA 觸點(diǎn)形式:1 Form A (SPST-NO) 輸出設(shè)備:MOSFET 封裝 / 箱體:USOP-4 安裝風(fēng)格:SMD/SMT
CPC7594BCTR 功能描述:固態(tài)繼電器-PCB安裝 6-pole, high hold current, SOIC LCAS, T/R RoHS:否 制造商:Omron Electronics 控制電壓范圍: 負(fù)載電壓額定值:40 V 負(fù)載電流額定值:120 mA 觸點(diǎn)形式:1 Form A (SPST-NO) 輸出設(shè)備:MOSFET 封裝 / 箱體:USOP-4 安裝風(fēng)格:SMD/SMT
CPC7594MA 功能描述:固態(tài)繼電器-PCB安裝 6-pole MLP LCAS RoHS:否 制造商:Omron Electronics 控制電壓范圍: 負(fù)載電壓額定值:40 V 負(fù)載電流額定值:120 mA 觸點(diǎn)形式:1 Form A (SPST-NO) 輸出設(shè)備:MOSFET 封裝 / 箱體:USOP-4 安裝風(fēng)格:SMD/SMT
CPC7594MATR 功能描述:固態(tài)繼電器-PCB安裝 6-pole MLP LCAS, T/R RoHS:否 制造商:Omron Electronics 控制電壓范圍: 負(fù)載電壓額定值:40 V 負(fù)載電流額定值:120 mA 觸點(diǎn)形式:1 Form A (SPST-NO) 輸出設(shè)備:MOSFET 封裝 / 箱體:USOP-4 安裝風(fēng)格:SMD/SMT
CPC7594MB 功能描述:固態(tài)繼電器-PCB安裝 6-pole, no SCR, MLP LCAS RoHS:否 制造商:Omron Electronics 控制電壓范圍: 負(fù)載電壓額定值:40 V 負(fù)載電流額定值:120 mA 觸點(diǎn)形式:1 Form A (SPST-NO) 輸出設(shè)備:MOSFET 封裝 / 箱體:USOP-4 安裝風(fēng)格:SMD/SMT