參數(shù)資料
型號: BPNPA16G-TR
英文描述: Quad Differential Drivers BDG1A, BDP1A, BDGLA, BPNGA, BPNPA, and BPPGA
中文描述: 四路差分驅動BDG1A,BDP1A,BDGLA,BPNGA,BPNPA和BPPGA
文件頁數(shù): 13/16頁
文件大?。?/td> 326K
代理商: BPNPA16G-TR
Lucent Technologies Inc.
13
Data Sheet
January 1999
BDG1A, BDP1A, BDGLA, BPNGA, BPNPA, and BPPGA
Quad Differential Drivers
Power Dissipation
System designers incorporating Lucent data transmis-
sion drivers in their applications should be aware of
package and thermal information associated with these
components.
Proper thermal management is essential to the long-
term reliability of any plastic encapsulated integrated
circuit. Thermal management is especially important
for surface-mount devices, given the increasing circuit
pack density and resulting higher thermal density. A
key aspect of thermal management involves the junc-
tion temperature (silicon temperature) of the integrated
circuit.
Several factors contribute to the resulting junction tem-
perature of an integrated circuit:
I
Ambient use temperature
I
Device power dissipation
I
Component placement on the board
I
Thermal properties of the board
I
Thermal impedance of the package
Thermal impedance of the package is referred to as
Θ
ja
and is measured in °C rise in junction temperature
per watt of power dissipation. Thermal impedance is
also a function of airflow present in system application.
The following equation can be used to estimate the
junction temperature of any device:
T
j
= T
A
+
P
D
Θ
ja
where:
T
j
is device junction temperature (°C).
T
A
is ambient temperature (°C).
P
D
is power dissipation (W).
Θ
ja
is package thermal impedance (junction to ambi-
ent
°C/W).
The power dissipation estimate is derived from two fac-
tors:
I
Internal device power
I
Power associated with output terminations
Multiplying I
CC
times V
CC
provides an estimate of inter-
nal power dissipation.
The power dissipated in the output is a function of the:
I
Termination scheme on the outputs
I
Termination resistors
I
Duty cycle of the output
Package thermal impedance depends on:
I
Airflow
I
Package type (e.g., DIP SOIC, SOIC/NB)
The junction temperature can be calculated using the
previous equation, after power dissipation levels and
package thermal impedances are known.
Figure 10 illustrates the thermal impedance estimates
for the various package types as a function of airflow.
This figure shows that package thermal impedance is
higher for the narrow-body SOIC package. Particular
attention should, therefore, be paid to the thermal man-
agement issues when using this package type.
In general, system designers should attempt to main-
tain junction temperature below 125 °C. The following
factors should be used to determine if specific data
transmission drivers in particular package types meet
the system reliability objectives:
I
System ambient temperature
I
Power dissipation
I
Package type
I
Airflow
12-2753F
Figure 10. Power Dissipation
DIP
SOIC/NB
J-LEAD SOIC/GULL WING
AIRFLOW (ft./min.)
200
400
600
800
1000
1200
0
40
50
60
70
80
90
100
110
120
130
140
T
Θ
j
(
°
C
相關PDF資料
PDF描述
BPP-2N-500 Analog IC
BPP-2N-1500 Analog IC
BPP2N2250 Analog IC
BPP2N3000 Analog IC
BPW39A PHOTOTRANSISTOR | NPN | 780NM PEAK WAVELENGTH | 100M | TO-92VAR
相關代理商/技術參數(shù)
參數(shù)描述
BPNPA16NB 制造商:AGERE 制造商全稱:AGERE 功能描述:QUAD DIFFERENTIAL DRIVERS
BPNPA16P 制造商:AGERE 制造商全稱:AGERE 功能描述:Quad Differential Drivers BDG1A, BDP1A, BDGLA, BPNGA, BPNPA, and BPPGA
BPN-SAS-113TQ 制造商:SUPER MICRO COMPUTER, INC. 功能描述:BPN,PWS,SNK,FAN - Trays
BPN-SAS-213EL1 制造商:SUPER MICRO COMPUTER, INC. 功能描述:BPN,PWS,SNK,FAN - Trays
BPN-SAS2-216EL1 制造商:Supermicro Computer Inc 功能描述:HOT-SWAP 24X 2.5" SAS / SATA HOT-SWAP DRIVE TRAYS SAS - Bulk