
AD8551/AD8552/AD8554
–11–
REV. 0
V
IN+
V
IN
2
V
OUT
A
B
A
A
F
A
F
B
V
OSA
+
B
B
C
M2
C
M1
F
A
F
B
V
NB
V
NA
2
B
A
V
OA
Figure 45. Output Phase of the Amplifier
Because
φ
A is now open and there is no place for C
M1
to dis-
charge, the voltage
V
NA
at the present time
t
is equal to the
voltage at the output of the nulling amp
V
OA
at the time when
φ
A was closed. If we call the period of the autocorrection
switching frequency
T
S
, then the amplifier switches between
phases every 0.5
3
T
S
. Therefore, in the amplification phase:
V
t
V
t
T
NA
NA
S
[ ]
=
1
2
(4)
And substituting Equation 4 and Equation 2 into Equation 3 yields:
V
t
A V
t
A V
t
A B V
t
T
B
OA
S
A
[ ]
=
[ ]
+
[ ]
+
1
2
1
(5)
For the sake of simplification, let us assume that the autocorrection
frequency is much faster than any potential change in
V
OSA
or
V
OSB
. This is a good assumption since changes in offset voltage are
a function of temperature variation or long-term wear time, both of
which are much slower than the auto-zero clock frequency of the
AD855x. This effectively makes
V
OS
time invariant and we can re-
arrange Equation 5 and rewrite it as:
(
1
V
t
A V
t
A
B
V
1
A B V
B
OA
A
A
OSA
+
A
[ ]
=
[ ]
+
+
)
(6)
or,
V
t
A
V
t
V
1
B
OA
A
IN
OSA
+
A
[ ]
=
[ ]
+
(7)
We can already get a feel for the autozeroing in action. Note the
V
OS
term is reduced by a 1 +
B
A
factor. This shows how the
nulling amplifier has greatly reduced its own offset voltage error
even before correcting the primary amplifier. Now the primary
amplifier output voltage is the voltage at the output of the
AD855x amplifier. It is equal to:
[ ]
=
V
In the amplification phase,
V
OA
=
V
NB
, so this can be rewritten as:
t
A V
t
V
B V
OUT
IN
OSB
NB
[ ]
+
)
+
(8)
V
t
A V
t
A V
B
A
V
t
V
1
B
OUT
IN
B
A
IN
OSA
+
A
[ ]
=
[ ]
+
+
[ ]
+
(9)
Combining terms,
V
t
V
t A
[ ]
A B
A B V
+
1
B
A V
OUT
IN
B
B
A
[ ]
=
+
)
+
+
(10)
The AD855x architecture is optimized in such a way that
A
A
=
A
B
and
B
A
=
B
B
and
B
A
>>1. Also, the gain product of
A
A
B
B
is much greater than
A
B
. These allow Equation 10 to be
simplified to:
[ ]
≈
Most obvious is the gain product of both the primary and nulling
amplifiers. This
A
A
B
A
term is what gives the AD855x its extremely
high open-loop gain. To understand how
V
OSA
and
V
OSB
relate to
the overall effective input offset voltage of the complete amplifier,
we should set up the generic amplifier equation of:
(
V
t
V
t A B
[ ]
A V
V
OUT
IN
A
OSA
OSB
+
+
)
(11)
V
Where
k
is the open-loop gain of an amplifier and
V
OS, EFF
is its
effective offset voltage. Putting Equation 12 into the form of
Equation 11 gives us:
[ ]
≈
And from here, it is easy to see that:
k
V
V
OUT
IN
OS
EFF
=
×
+
)
,
(12)
V
t
V
t A B
[ ]
V
A B
OUT
IN
A
OS
EFF
A
+
,
(13)
V
V
V
B
OS
EFF
OSA
OSB
A
,
≈
+
(14)
Thus, the offset voltages of both the primary and nulling ampli-
fiers are reduced by the gain factor
B
A
. This takes a typical input
offset voltage from several millivolts down to an effective input
offset voltage of submicrovolts. This autocorrection scheme is
what makes the AD855x family of amplifiers among the most
precise amplifiers in the world.
High Gain, CMRR, PSRR
Common-mode and power supply rejection are indications of
the amount of offset voltage an amplifier has as a result of a
change in its input common-mode or power supply voltages. As
shown in the previous section, the autocorrection architecture of
the AD855x allows it to quite effectively minimize offset volt-
ages. The technique also corrects for offset errors caused by
common-mode voltage swings and power supply variations.
This results in superb CMRR and PSRR figures in excess of
130 dB. Because the autocorrection occurs continuously, these
figures can be maintained across the device’s entire temperature
range, from –40
°
C to +125
°
C.
Maximizing Performance Through Proper Layout
To achieve the maximum performance of the extremely high
input impedance and low offset voltage of the AD855x, care
should be taken in the circuit board layout. The PC board sur-
face must remain clean and free of moisture to avoid leakage
currents between adjacent traces. Surface coating of the circuit
board will reduce surface moisture and provide a humidity
barrier, reducing parasitic resistance on the board. The use of
guard rings around the amplifier inputs will further reduce leak-
age currents. Figure 46 shows how the guard ring should be
configured and Figure 47 shows the top view of how a surface
mount layout can be arranged. The guard ring does not need to