CF VOUT 0.1 F 鈥�15 +15 C1 33pF R" />
鍙冩暩(sh霉)璩囨枡
鍨嬭櫉(h脿o)锛� AD711KRZ
寤犲晢锛� Analog Devices Inc
鏂囦欢闋佹暩(sh霉)锛� 2/16闋�
鏂囦欢澶�?銆�?/td> 0K
鎻忚堪锛� IC OPAMP BIFET PREC 25MA 8SOIC
鐢�(ch菐n)鍝佸煿瑷�(x霉n)妯″锛� Op Amp Basics
妯�(bi膩o)婧�(zh菙n)鍖呰锛� 98
鏀惧ぇ鍣ㄩ鍨嬶細 J-FET
闆昏矾鏁�(sh霉)锛� 1
杞�(zhu菐n)鎻涢€熺巼锛� 20 V/µs
-3db甯跺锛� 4MHz
闆绘祦 - 杓稿叆鍋忓锛� 15pA
闆诲 - 杓稿叆鍋忕Щ锛� 200µV
闆绘祦 - 闆绘簮锛� 2.5mA
闆绘祦 - 杓稿嚭 / 閫氶亾锛� 25mA
闆诲 - 闆绘簮锛屽柈璺�/闆欒矾(±)锛� 9 V ~ 36 V锛�±4.5 V ~ 18 V
宸ヤ綔婧害锛� 0°C ~ 70°C
瀹夎椤炲瀷锛� 琛ㄩ潰璨艰
灏佽/澶栨锛� 8-SOIC锛�0.154"锛�3.90mm 瀵級
渚涙噳(y墨ng)鍟嗚ō(sh猫)鍌欏皝瑁濓細 8-SOIC
鍖呰锛� 绠′欢
鐢�(ch菐n)鍝佺洰閷勯爜闈細 773 (CN2011-ZH PDF)
REV. E
AD711
鈥�10鈥�
AD711K
CF
VOUT
0.1 F
鈥�15
+15
C1
33pF
R2*
OUT1
RFB
VDD
VREF
DGND AGND
R1*
VIN
ANALOG
COMMON
GAIN
ADJUST
DB11-DB0
VDD
AD7545
*FOR VALUES R1 AND R2,
REFER TO TABLE 1
Figure 8. Unipolar Binary Operation
R1 and R2 calibrate the zero offset and gain error of the DAC.
Specific values for these resistors depend upon the grade of
AD7545 and are shown below.
Table I. Recommended Trim Resistor Values vs. Grades
of the AD7545 for VDD = 5 V
TRIM
RESISTOR JN/AQ/SD KN/BQ/TD LN/CQ/UD GLN/GCQ/GUD
R1
500
W
200
W
100
W
20
W
R2
150
W
68
W
33
W
6.8
W
NOISE CHARACTERISTICS
The random nature of noise, particularly in the 1/f region, makes
it difficult to specify in practical terms. At the same time,
designers of precision instrumentation require certain guaranteed
maximum noise levels to realize the full accuracy of their equipment.
The AD711C grade is specified at a maximum level of 4.0
mV p-p,
in a 0.1 Hz to 10 Hz bandwidth. Each AD711C receives a 100%
noise test for two 10-second intervals; devices with any excursion
in excess of 4.0
mV are rejected. The screened lot is then submitted
to Quality Control for verification on an AQL basis.
All other grades of the AD711 are sample-tested on an AQL
basis to a limit of 6
mV p-p, 0.1 to 10 Hz.
DRIVING THE ANALOG INPUT OF AN A/D CONVERTER
An op amp driving the analog input of an A/D converter, such
as that shown in Figure 11, must be capable of maintaining a
constant output voltage under dynamically changing load conditions.
In successive-approximation converters, the input current is
compared to a series of switched trial currents. The comparison
point is diode clamped but may deviate several hundred millivolts
resulting in high frequency modulation of A/D input current.
Figures 10a and 10b show the settling time characteristics of the
AD711 when used as a DAC output buffer for the AD7545.
a. Full-Scale Positive
b. Full-Scale Negative
Transition
Figure 10. Settling Characteristics for AD711 with AD7545
compared to a series of switched trial currents. The comparison
point is diode clamped but may deviate several hundred milli-
volts resulting in high frequency modulation of A/D input
current. The output impedance of a feedback amplifier is made
artificially low by the loop gain. At high frequencies, where the
loop gain is low, the amplifier output impedance can approach
its open loop value. Most IC amplifiers exhibit a minimum open
loop output impedance of 25
W due to current limiting resistors.
A few hundred microamps reflected from the change in con-
verter loading can introduce errors in instantaneous input
Figures 8 and 9 show the AD711 and AD7545 (12-bit CMOS
DAC) configured for unipolar binary (2-quadrant multiplication)
or bipolar (4-quadrant multiplication) operation. Capacitor C1
provides phase compensation to reduce overshoot and ringing.
+15V
0.1 F
AD711K
鈥�15V
R3
10k
1%
+15V
0.1 F
AD711K
鈥�15V
R5
20k
1%
R4
20k
1%
R2*
C1
33pF
OUT1
RFB
VDD
VREF
DGND
AGND
R1*
VIN
GAIN
ADJUST
DB11-DB0
VDD
VOUT
AD7545
12
DATA INPUT
ANALOG
COMMON
*FOR VALUES R1 AND R2,
REFER TO TABLE 1
Figure 9. Bipolar Operation
+15V
0.1 F
AD711
鈥�15V
R2
100
GAIN
ADJUST
12/8
R1
100
OFFSET
ADJUST
CS
AO
R/C
CE
REF IN
REF OUT
BIP OFF
10VIN
20VIN
ANA COM
STS
HIGH
BITS
MIDDLE
BITS
LOW
BITS
+5V
+15V
鈥�15V
DIG COM
AD574
10V
ANALOG
INPUT
ANALOG COM
Figure 11. AD711 as ADC Unity Gain Buffer
鐩搁棞(gu膩n)PDF璩囨枡
PDF鎻忚堪
PBC11SADN CONN HEADER .100 SINGL STR 11POS
OP213FPZ IC OPAMP GP 3.4MHZ DUAL LN 8DIP
OP213FSZ IC OPAMP GP 3.4MHZ DUAL LN SOIC
PEC11SFDN CONN HEADER .100 SINGL STR 11POS
1.5SMC47AT3G TVS 1500W 47V UNIDIRECT SMC
鐩搁棞(gu膩n)浠g悊鍟�/鎶€琛�(sh霉)鍙冩暩(sh霉)
鍙冩暩(sh霉)鎻忚堪
AD711KRZ 鍒堕€犲晢:Analog Devices 鍔熻兘鎻忚堪:IC OP-AMP 4MHZ 20V/ ((NW)) 鍒堕€犲晢:Analog Devices 鍔熻兘鎻忚堪:IC, OP-AMP, 4MHZ, 20V/ us, SOIC-8
AD711KRZ-REEL 鍔熻兘鎻忚堪:IC OPAMP BIFET PREC 25MA 8SOIC RoHS:鏄� 椤炲垾:闆嗘垚闆昏矾 (IC) >> Linear - Amplifiers - Instrumentation 绯诲垪:- 妯�(bi膩o)婧�(zh菙n)鍖呰:50 绯诲垪:LinCMOS™ 鏀惧ぇ鍣ㄩ鍨�:閫氱敤 闆昏矾鏁�(sh霉):4 杓稿嚭椤炲瀷:- 杞�(zhu菐n)鎻涢€熺巼:0.05 V/µs 澧炵泭甯跺绌�:110kHz -3db甯跺:- 闆绘祦 - 杓稿叆鍋忓:0.7pA 闆诲 - 杓稿叆鍋忕Щ:210µV 闆绘祦 - 闆绘簮:57µA 闆绘祦 - 杓稿嚭 / 閫氶亾:30mA 闆诲 - 闆绘簮锛屽柈璺�/闆欒矾(±):3 V ~ 16 V锛�±1.5 V ~ 8 V 宸ヤ綔婧害:-40°C ~ 85°C 瀹夎椤炲瀷:琛ㄩ潰璨艰 灏佽/澶栨:14-SOIC锛�0.154"锛�3.90mm 瀵級 渚涙噳(y墨ng)鍟嗚ō(sh猫)鍌欏皝瑁�:14-SOIC 鍖呰:绠′欢 鐢�(ch菐n)鍝佺洰閷勯爜闈�:865 (CN2011-ZH PDF) 鍏跺畠鍚嶇ū:296-1834296-1834-5
AD711KRZ-REEL7 鍔熻兘鎻忚堪:IC OPAMP BIFET PREC 25MA 8SOIC RoHS:鏄� 椤炲垾:闆嗘垚闆昏矾 (IC) >> Linear - Amplifiers - Instrumentation 绯诲垪:- 鍏跺畠鏈夐棞(gu膩n)鏂囦欢:Automotive Product Guide 鐢�(ch菐n)鍝佸煿瑷�(x霉n)妯″:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 妯�(bi膩o)婧�(zh菙n)鍖呰:1 绯诲垪:- 鏀惧ぇ鍣ㄩ鍨�:閫氱敤 闆昏矾鏁�(sh霉):1 杓稿嚭椤炲瀷:婊挎摵骞� 杞�(zhu菐n)鎻涢€熺巼:3 V/µs 澧炵泭甯跺绌�:10MHz -3db甯跺:- 闆绘祦 - 杓稿叆鍋忓:1pA 闆诲 - 杓稿叆鍋忕Щ:70µV 闆绘祦 - 闆绘簮:2.5mA 闆绘祦 - 杓稿嚭 / 閫氶亾:48mA 闆诲 - 闆绘簮锛屽柈璺�/闆欒矾(±):2.7 V ~ 5.5 V锛�±1.35 V ~ 2.75 V 宸ヤ綔婧害:-40°C ~ 125°C 瀹夎椤炲瀷:琛ㄩ潰璨艰 灏佽/澶栨:SOT-23-6 渚涙噳(y墨ng)鍟嗚ō(sh猫)鍌欏皝瑁�:SOT-6 鍖呰:Digi-Reel® 鍏跺畠鍚嶇ū:MAX4475AUT#TG16DKR
AD711SCHIPS 鍒堕€犲晢:AD 鍒堕€犲晢鍏ㄧū:Analog Devices 鍔熻兘鎻忚堪:Precision, Low Cost, High Speed, BiFET Op Amp
AD711SH 鍒堕€犲晢:AD 鍒堕€犲晢鍏ㄧū:Analog Devices 鍔熻兘鎻忚堪:Precision, Low Cost, High Speed, BiFET Op Amp