The typical distribution of the nominal resistance RAB
鍙冩暩(sh霉)璩囨枡
鍨嬭櫉锛� AD5241BRU1M-REEL7
寤犲晢锛� Analog Devices Inc
鏂囦欢闋佹暩(sh霉)锛� 5/20闋�
鏂囦欢澶�?銆�?/td> 0K
鎻忚堪锛� IC DGTL POT 256POS 14-TSSOP
妯�(bi膩o)婧�(zh菙n)鍖呰锛� 1,000
鎺ョ墖锛� 256
闆婚樆锛堟瓙濮嗭級锛� 1M
闆昏矾鏁�(sh霉)锛� 1
婧害绯绘暩(sh霉)锛� 妯�(bi膩o)婧�(zh菙n)鍊� 30 ppm/°C
瀛樺劜鍣ㄩ鍨嬶細 鏄撳け
鎺ュ彛锛� I²C锛堣ō(sh猫)鍌欎綅鍧€锛�
闆绘簮闆诲锛� 2.7 V ~ 5.5 V锛�±2.3 V ~ 2.7 V
宸ヤ綔婧害锛� -40°C ~ 105°C
瀹夎椤炲瀷锛� 琛ㄩ潰璨艰
灏佽/澶栨锛� 14-TSSOP锛�0.173"锛�4.40mm 瀵級
渚涙噳(y墨ng)鍟嗚ō(sh猫)鍌欏皝瑁濓細 14-TSSOP
鍖呰锛� 甯跺嵎 (TR)
AD5241/AD5242
Rev. C | Page 13 of 20
The typical distribution of the nominal resistance RAB from
channel to channel matches within 卤1% for AD5242. Device-
to-device matching is process lot dependent, and it is possible to
have 卤30% variation. Because the resistance element is processed in
thin film technology, the change in RAB with temperature has no
more than a 30 ppm/掳C temperature coefficient.
PROGRAMMING THE POTENTIOMETER DIVIDER
Voltage Output Operation
The digital potentiometer easily generates output voltages at
wiper-to-B and wiper-to-A to be proportional to the input
voltage at A-to-B. Unlike the polarity of VDD /VSS, which must
be positive, voltage across terminal A to terminal B, terminal W
to terminal A, and terminal W to terminal B can be at either
polarity provided that VSS is powered by a negative supply.
If ignoring the effect of the wiper resistance for approximation,
connecting Terminal A to 5 V and Terminal B to ground produces
an output voltage at the wiper-to-B starting at 0 V up to 1 LSB less
than 5 V. Each LSB of voltage is equal to the voltage applied across
Terminal AB divided by the 256 positions of the potentiometer
divider. Because AD5241/AD5242 can be supplied by dual
supplies, the general equation defining the output voltage at VW
with respect to ground for any valid input voltage applied to
Terminal A and Terminal B is
()
B
A
W
V
D
V
D
V
256
+
=
(3)
which can be simplified to
()
B
AB
W
V
D
V
+
=
256
(4)
where D is the decimal equivalent of the binary code between 0
to 255 that is loaded in the 8-bit RDAC register.
For a more accurate calculation, including the effects of wiper
resistance, VW can be found as
()
B
AB
WA
A
AB
WB
W
V
R
D
R
V
R
D
R
D
V
)
(
)
(
+
=
(5)
where RWB(D) and RWA(D) can be obtained from Equation 1 and
Equation 2.
Operation of the digital potentiometer in divider mode results
in a more accurate operation over temperature. Unlike rheostat
mode, the output voltage is dependent on the ratio of the internal
resistors, RWA and RWB, and not the absolute values; therefore,
the temperature drift reduces to 5 ppm/掳C.
DIGITAL INTERFACE
2-Wire Serial Bus
The AD5241/AD5242 are controlled via an I2C-compatible
serial bus. The RDACs are connected to this bus as slave devices.
Referring to Figure 3 and Figure 4, the first byte of AD5241/
AD5242 is a slave address byte. It has a 7-bit slave address and
an R/W bit. The five MSBs are 01011 and the following two bits
are determined by the state of the AD0 and AD1 pins of the
device. AD0 and AD1 allow users to use up to four of these
devices on one bus.
The 2-wire, I2C serial bus protocol operates as follows:
1.
The master initiates a data transfer by establishing a start
condition, which is when a high-to-low transition on the SDA
line occurs while SCL is high (see Figure 4). The following
byte is the Frame 1, slave address byte, which consists of the
7-bit slave address followed by an R/W bit (this bit determines
whether data is read from or written to the slave device).
The slave whose address corresponds to the transmitted
address responds by pulling the SDA line low during the
ninth clock pulse (this is the acknowledge bit). At this stage,
all other devices on the bus remain idle while the selected
device waits for data to be written to or read from its serial
register. If the R/W bit is high, the master reads from the
slave device. If the R/W bit is low, the master writes to the
slave device.
2.
A write operation contains an extra instruction byte more
than the read operation. The Frame 2 instruction byte in
write mode follows the slave address byte. The MSB of the
instruction byte labeled A/B is the RDAC subaddress select. A
low selects RDAC1 and a high selects RDAC2 for the dual-
channel AD5242. Set A/B to low for the AD5241. The
second MSB, RS, is the midscale reset. A logic high of this
bit moves the wiper of a selected RDAC to the center tap
where RWA = RWB. The third MSB, SD, is a shutdown bit. A
logic high on SD causes the RDAC to open circuit at
Terminal A while shorting the wiper to Terminal B. This
operation yields almost a 0 惟 rheostat mode or 0 V in
potentiometer mode. This SD bit serves the same function
as the SHDN pin except that the SHDN pin reacts to active
low. The following two bits are O2 and O1. They are extra
programmable logic outputs that users can use to drive
other digital loads, logic gates, LED drivers, analog switches,
and the like. The three LSBs are don鈥檛 care (see
).
3.
After acknowledging the instruction byte, the last byte in
write mode is the, Frame 3 data byte. Data is transmitted
over the serial bus in sequences of nine clock pulses (eight
data bits followed by an acknowledge bit). The transitions
on the SDA line must occur during the low period of SCL
and remain stable during the high period of SCL (see Figure 4).
鐩搁棞(gu膩n)PDF璩囨枡
PDF鎻忚堪
AD5207BRUZ100-R7 IC POT DGTL DUAL 256POS 14TSSOP
AD5207BRUZ10-RL7 IC DGTL POT DUAL 10K 14-TSSOP
MC100EP196BMNG IC DELAY LINE 1024TAP 32-QFN
AD5207BRUZ50-RL7 IC DGTL POT DUAL 50K 14-TSSOP
VE-B4X-MY-F3 CONVERTER MOD DC/DC 5.2V 50W
鐩搁棞(gu膩n)浠g悊鍟�/鎶€琛�(sh霉)鍙冩暩(sh霉)
鍙冩暩(sh霉)鎻忚堪
AD5241BRUZ10 鍔熻兘鎻忚堪:IC POT DGTL 256POS 14-TSSOP RoHS:鏄� 椤炲垾:闆嗘垚闆昏矾 (IC) >> 鏁�(sh霉)鎿�(j霉)閲囬泦 - 鏁�(sh霉)瀛楅浕浣嶅櫒 绯诲垪:- 妯�(bi膩o)婧�(zh菙n)鍖呰:3,300 绯诲垪:WiperLock™ 鎺ョ墖:257 闆婚樆锛堟瓙濮嗭級:100k 闆昏矾鏁�(sh霉):1 婧害绯绘暩(sh霉):妯�(bi膩o)婧�(zh菙n)鍊� 150 ppm/°C 瀛樺劜鍣ㄩ鍨�:鏄撳け 鎺ュ彛:3 绶� SPI锛堣姱鐗囬伕鎿囷級 闆绘簮闆诲:1.8 V ~ 5.5 V 宸ヤ綔婧害:-40°C ~ 125°C 瀹夎椤炲瀷:琛ㄩ潰璨艰 灏佽/澶栨:8-VDFN 瑁搁湶鐒婄洡 渚涙噳(y墨ng)鍟嗚ō(sh猫)鍌欏皝瑁�:8-DFN-EP锛�3x3锛� 鍖呰:甯跺嵎 (TR)
AD5241BRUZ100 鍔熻兘鎻忚堪:IC DGTL POT 256POS 100K 14TSSOP RoHS:鏄� 椤炲垾:闆嗘垚闆昏矾 (IC) >> 鏁�(sh霉)鎿�(j霉)閲囬泦 - 鏁�(sh霉)瀛楅浕浣嶅櫒 绯诲垪:- 妯�(bi膩o)婧�(zh菙n)鍖呰:3,300 绯诲垪:WiperLock™ 鎺ョ墖:257 闆婚樆锛堟瓙濮嗭級:100k 闆昏矾鏁�(sh霉):1 婧害绯绘暩(sh霉):妯�(bi膩o)婧�(zh菙n)鍊� 150 ppm/°C 瀛樺劜鍣ㄩ鍨�:鏄撳け 鎺ュ彛:3 绶� SPI锛堣姱鐗囬伕鎿囷級 闆绘簮闆诲:1.8 V ~ 5.5 V 宸ヤ綔婧害:-40°C ~ 125°C 瀹夎椤炲瀷:琛ㄩ潰璨艰 灏佽/澶栨:8-VDFN 瑁搁湶鐒婄洡 渚涙噳(y墨ng)鍟嗚ō(sh猫)鍌欏皝瑁�:8-DFN-EP锛�3x3锛� 鍖呰:甯跺嵎 (TR)
AD5241BRUZ100-R7 鍔熻兘鎻忚堪:IC DGTL POT 256POS 14-TSSOP T/R RoHS:鏄� 椤炲垾:闆嗘垚闆昏矾 (IC) >> 鏁�(sh霉)鎿�(j霉)閲囬泦 - 鏁�(sh霉)瀛楅浕浣嶅櫒 绯诲垪:- 妯�(bi膩o)婧�(zh菙n)鍖呰:3,000 绯诲垪:DPP 鎺ョ墖:32 闆婚樆锛堟瓙濮嗭級:10k 闆昏矾鏁�(sh霉):1 婧害绯绘暩(sh霉):妯�(bi膩o)婧�(zh菙n)鍊� 300 ppm/°C 瀛樺劜鍣ㄩ鍨�:闈炴槗澶� 鎺ュ彛:3 绶氫覆琛岋紙鑺墖閬告搰锛岄仦澧�锛屽/娓涳級 闆绘簮闆诲:2.5 V ~ 6 V 宸ヤ綔婧害:-40°C ~ 85°C 瀹夎椤炲瀷:琛ㄩ潰璨艰 灏佽/澶栨:8-WFDFN 瑁搁湶鐒婄洡 渚涙噳(y墨ng)鍟嗚ō(sh猫)鍌欏皝瑁�:8-TDFN锛�2x3锛� 鍖呰:甯跺嵎 (TR)
AD5241BRUZ10-R7 鍔熻兘鎻忚堪:IC DGTL POT 256POS 10K 14TSSOP RoHS:鏄� 椤炲垾:闆嗘垚闆昏矾 (IC) >> 鏁�(sh霉)鎿�(j霉)閲囬泦 - 鏁�(sh霉)瀛楅浕浣嶅櫒 绯诲垪:- 鐢�(ch菐n)鍝佸煿瑷�(x霉n)妯″:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 妯�(bi膩o)婧�(zh菙n)鍖呰:1 绯诲垪:- 鎺ョ墖:256 闆婚樆锛堟瓙濮嗭級:100k 闆昏矾鏁�(sh霉):1 婧害绯绘暩(sh霉):妯�(bi膩o)婧�(zh菙n)鍊� 35 ppm/°C 瀛樺劜鍣ㄩ鍨�:闈炴槗澶� 鎺ュ彛:3 绶氫覆鍙� 闆绘簮闆诲:2.7 V ~ 5.25 V 宸ヤ綔婧害:-40°C ~ 85°C 瀹夎椤炲瀷:琛ㄩ潰璨艰 灏佽/澶栨:8-WDFN 瑁搁湶鐒婄洡 渚涙噳(y墨ng)鍟嗚ō(sh猫)鍌欏皝瑁�:8-TDFN-EP锛�3x3锛� 鍖呰:鍓垏甯� (CT) 鐢�(ch菐n)鍝佺洰閷勯爜闈�:1399 (CN2011-ZH PDF) 鍏跺畠鍚嶇ū:MAX5423ETA+TCT
AD5241BRUZ1M 鍔熻兘鎻忚堪:IC DGTL POT 256POS 14-TSSOP RoHS:鏄� 椤炲垾:闆嗘垚闆昏矾 (IC) >> 鏁�(sh霉)鎿�(j霉)閲囬泦 - 鏁�(sh霉)瀛楅浕浣嶅櫒 绯诲垪:- 妯�(bi膩o)婧�(zh菙n)鍖呰:2,500 绯诲垪:XDCP™ 鎺ョ墖:256 闆婚樆锛堟瓙濮嗭級:100k 闆昏矾鏁�(sh霉):1 婧害绯绘暩(sh霉):妯�(bi膩o)婧�(zh菙n)鍊� ±300 ppm/°C 瀛樺劜鍣ㄩ鍨�:闈炴槗澶� 鎺ュ彛:I²C锛堣ō(sh猫)鍌欎綅鍧€锛� 闆绘簮闆诲:2.7 V ~ 5.5 V 宸ヤ綔婧害:0°C ~ 70°C 瀹夎椤炲瀷:琛ㄩ潰璨艰 灏佽/澶栨:14-TSSOP锛�0.173"锛�4.40mm 瀵級 渚涙噳(y墨ng)鍟嗚ō(sh猫)鍌欏皝瑁�:14-TSSOP 鍖呰:甯跺嵎 (TR)