參數(shù)資料
型號: 4880G
廠商: Aavid Thermalloy
文件頁數(shù): 13/116頁
文件大?。?/td> 0K
描述: MOUNTING KIT TO-220
標(biāo)準(zhǔn)包裝: 1,000
系列: 4880
附件類型: 安裝套件
適用于相關(guān)產(chǎn)品: 散熱片
產(chǎn)品目錄頁面: 2672 (CN2011-ZH PDF)
配用: HS410-ND - BOARD LEVEL HEATSINK 1.95" TO220
HS404-ND - BOARD LEVEL HEATSINK 1" TO-220
HS415-ND - BOARD LEVEL HEATSINK .375"TO-220
HS388-ND - HEATSINK TO-220 2.5W BLK W/PINS
HS387-ND - HEATSINK TO-220 PWR BLK W/PINS
HS386-ND - HEATSINK TO-220 H=2.5" BLK W/PIN
HS382-ND - HEATSINK TO-220 POWER W/PINS BK
HS380-ND - HEATSINK TO-220 POWER W/PINS BK
HS374-ND - HEATSINK TO-220 W/PINS BLK 2"
HS373-ND - HEATSINK TO-220 VERT MNT W/TABS
更多...
其它名稱: 034794
4880G-ND
HS417
11
READING
A
T
HERMAL
PERFORMANCE
GR
APH
EUROPE
ASIA
Italy Tel: +39 051 764011 email: sales.it@aavid.com
United Kingdom Tel: +44 1793 401400 email: sales.uk@aavid.com
Singapore Tel: +65 6362 8388 email: sales@aavid.com.sg
Taiwan Tel: +886(2) 2698-9888 email: sales@aavid.com.tw
AMERICA
USA Tel: +1 (603) 224-9988 email: info@aavid.com
www.aavidthermalloy.com
The performance graphs you will see in this
catalog (see graph 579802) are actually a
composite of two separate graphs which
have been combined to save space. The small
arrows on each curve indicate to which axis
the curve corresponds. Thermal graphs are
published assuming the device to be cooled
is properly mounted and the heat sink is in
its recommended mounting position.
GRAPH A is used to show heat sink perform-
ance when used in a natural convection envi-
ronment (i.e. without forced air). This graph
starts in the lower left hand corner with the
horizontal axis representing the heat dissipa-
tion (watts) and the vertical left hand axis
representing the rise in heat sink mounting
surface temperature above ambient (°C). By
knowing the power to be dissipated, the
temperature rise of the mounting surface
can be predicted. Thermal resistance in natu-
ral convection is determined by dividing this
temperature rise by the power input (°C/W).
EXAMPLE A: Aavid Thermalloy part number
579802 is to be used to dissipate 3 watts of
power in natural convection. Because we are
dealing with natural convection, we refer to
graph “A”. Knowing that 3 watts are to be dis-
sipated, follow the grid line to the curve and
find that at 3 watts there is a temperature
rise of 75°C. To get the thermal resistance,
divide the temperature rise by the power
dissipated, which yields 25°C/W.
GRAPH B is used to show heat sink per-
formance when used in a forced convec-
tion environment (i.e. with forced air flow
through the heat sink). This graph has its
origin in the top right hand corner with
the horizontal axis representing air velocity
over the heat sink LFM* and the vertical
axis representing the thermal resistance of
the heat sink (°C/W). Air velocity is calculat-
ed by dividing the output volumetric flow
rate of the fan by the cross-sectional area
of the outflow air passage.
EXAMPLE B: For the same application
we add a fan which blows air over the heat
sink at a velocity of 400 LFM.
The addition of a fan indicates the use of
forced convection and therefore we refer
to graph “B”. This resistance of 9.50°C/W is
then multiplied by the power to be dissi-
pated, 3 watts. This yields a temperature
rise of 28.5°C.
CONVERTING VOLUME
TO VELOCITY
Although most fans are normally rated and
compared at their free air delivery at zero
back pressure, this is rarely the case in most
applications. For accuracy, the volume of
output must be derated 60%–80% for
the anticipation of back pressure.
EXAMPLE: The output air volume
of a fan is given as 80 CFM. The output area
is 6 inches by 6 inches or 36 in2 or 25 ft2.
To find velocity:
80
0.25
Velocity is 320 LFM, which at 80%,
derates to 256 LFM.
DESIGN ASSISTANCE
Aavid Thermalloy can assist in the design
of heat sinks for both forced and natural
convection applications. Contact us for help
with your next thermal challenge. For more
information, visit our web site at:
www.aavidthermalloy.com
Heat Dissipated—Watts
0
20
40
60
80
100
01
2
3
4
5
Mounting
Surface
Temp
Rise
Above
Ambient—
°
C
Air Velocity—Feet Per Minute
Thermal
Resistance
From
MTG
Surface
to
Ambient—
°
C/Watt
20
16
12
4
8
0
400
200
600
800
1000
GRAPH B
Velocity (LFM) =
Velocity =
= 320
Air Velocity—Feet Per Minute
Heat Dissipated—Watts
Thermal
Resistance
From
MTG
Surface
to
Ambient—
°
C/Watt
20
0
20
40
60
80
100
01
2
3
4
5
16
12
4
8
0
400
200
600
800
1000
Mounting
Surface
Temp
Rise
Above
Ambient—
°
C
GRAPH A
579802
Reading a Thermal Performance Graph
Velocity
(LFM)* = Volume (CFM)**
area (ft2)
* Linear feet per minute
** Cubic feet per minute
Volume (CFM)
area (ft2)
相關(guān)PDF資料
PDF描述
4890N FAN TUBEAXIAL 119X38MM 230VAC
4953G THERMAL EPOXY
5-1542000-6 HEAT SINK BGA 25MM 2FIN RADIAL
5-1542003-0 25MM HS ASSY ULTEM CL
5-1542003-1 25MM HS ASSY ULTEM CL
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
4880M 制造商:Aavid Thermalloy 功能描述:Mounting Kits Mica Insulator
4880MG 功能描述:導(dǎo)熱接口產(chǎn)品 MOUNTING KIT TO-220 RoHS:否 制造商:Panasonic Electronic Components 類型:Thermal Graphite Sheets 材料:Graphite Polymer Film 長度:180 mm 寬度:115 mm 厚度:0.07 mm 工作溫度范圍:
4880S 功能描述:散熱片 MOUNTING KIT TO-220 RoHS:否 制造商:Ampro By ADLINK 產(chǎn)品:Heat Sink Accessories 安裝風(fēng)格:Through Hole 散熱片材料: 散熱片樣式: 熱阻: 長度: 寬度: 高度: 設(shè)計(jì)目的:Express-HRR
4880SG 功能描述:散熱片 MOUNTING KIT TO-220 RoHS:否 制造商:Ampro By ADLINK 產(chǎn)品:Heat Sink Accessories 安裝風(fēng)格:Through Hole 散熱片材料: 散熱片樣式: 熱阻: 長度: 寬度: 高度: 設(shè)計(jì)目的:Express-HRR
4881 制造商:FILTRAN 制造商全稱:Filtran LTD 功能描述:Power Transformers Low Profile