A
2
CALEX
FaxFACTS:
315
1997
Models 166 and 167 Bridgesensors
http://www.calex.com
2401 Stanwell Drive
Concord, CA 94520-4841
(510) 687-4411 Fax (510) 687-3333
Specifications (Typicalat+25°ratedsupplyunlessotherwisenoted.)
Bridge Power Supply
The bridge power supply is an adjustable regulated supply
specifically designed to drive load cell bridges from 120 to 350
ohms. A curve of maximum output current versus output
voltage is shown in Figure 3. The voltage is adjusted by
means of an external potentiometer.
Voltage stability is excellent and is derived from a zener
reference with a 0.002%/°C temperature coefficient. The
power supply uses a series pass regulator together with a
frequency stabilized op-amp to provide a ripple free and well
regulated voltage source to drive the load cell.
Power supply sense lines are provided on the module so that
remote sensing may be used. They can be used to compensate
for the voltage drop in long leads to the transducer or to add
an external current booster without degrading regulation.
Instrumentation Amplifier
The instrumentation amplifier section of the Models 166/167
is a true differential, high input impedance, low drift amplifier.
The design is optimized to perform well with low impedance
sources such as a load cell. The drift of the amplifier offset
voltage is less than 0.5V/°C which is the type of performance
needed for a strain gage load cell amplifier. For example, with
a bridge supply voltage of 10 Volts, a 2 mV/Volt load cell has
an output of 20 mV full scale. Amplifier drift of 0.5 V/°C thus
represents an error of 0.0025%/°C of full scale.
Common mode range is ±6 Volts which is adequate when
using a 10 Volt bridge supply. Amplifier output is brought out
separately for use with or without the voltage to frequency
converter. It is also possible to offset the amplifier output from
an external low impedance source.
Voltage to Frequency Converter
The Models 166 and 167 employ an advanced integrated
circuit to provide a frequency output proportional to the output
voltage of the instrumentation amplifier. Although designed
for use with the internal instrumentation amplifier, the V/F
converter will accept any DC input voltage of from 0 to -10
VDC. Output frequency varies linearly with the input voltage
from 0 to
10 kHz or 100 kHz as appropriate. The linearity
of the converter is ±0.05% of full scale over the operating
range.
Output pulses on the Model 166 are available either as a
direct pulse of amplitude +14 Volts or in the form of an
optically isolated transistor switch that can be used with a
separate power supply for complete system isolation. The
Model 167 does not have optical isolation.
Mounting Kit
A convenient PC Card Mounting Kit is available that allows
either Bridgesensor to be plugged into a standard 15 pin
printed circuit connector. The Model 166/7 Mounting Kit
accepts either the Model 166 or Model 167. It includes the
necessary potentiometers to adjust the amplifier input offset,
the amplifier gain, and the bridge supply voltage. Several test
points are provided to assist in calibration or trouble shooting.
When ordered with a mounting kit the Model 166 or Model 167
will be delivered mounted on the MK166/7 P.C. card and the
potentiometers will be adjusted for zero input offset, an
amplifier
l
e
d
o
M6
6
17
6
1
r
e
i
f
i
l
p
m
A
t
u
p
n
I
n
i
a
G
.
j
d
A
.
t
x
E
,
e
g
n
a
R0
0
1
o
t
0
1
n
o
i
t
a
u
q
Eg
R
/
m
h
o
l
i
k
0
2
+
0
1
=
G
y
c
a
r
u
c
A
n
o
i
t
a
u
q
E
± %
2
.
x
a
m
,
y
t
i
r
a
e
n
il
n
o
N
±
%
1
0
.
0
t
n
e
i
c
i
f
e
o
C
e
r
u
t
a
r
e
p
m
e
T
±
/
m
p
0
5
°C
t
u
p
n
I
.
f
i
D
-
e
c
n
e
d
e
p
m
I
t
u
p
n
Im
h
o
g
e
m
0
1
M
C
-
e
c
n
e
d
e
p
m
I
t
u
p
n
Im
h
o
g
e
m
0
5
M
C
-
,
e
g
n
a
R
e
g
a
t
l
o
V
t
u
p
n
I
± V
6
,
n
o
i
t
c
e
j
e
R
e
d
o
M
n
o
m
o
C
0
1
=
G
,
z
H
0
6
o
t
C
D.
p
y
t
B
d
0
1
s
t
e
s
f
O
t
u
p
n
I
)
I
T
R
(
e
g
a
t
l
o
V
t
e
s
f
O
t
u
p
n
I
0
1
=
G
@
5
2
+
d
n
a
°
)
o
r
e
Z
o
t
.
j
d
A
(
C
± 0
0
1
mV
.
x
a
m
,
e
r
u
t
a
r
e
p
m
e
T
.
s
V
± 5
.
0
m /
V
°C
V
(
y
l
p
u
S
.
s
V
S)0
5
m V
/
V
5
2
+
t
a
t
n
e
r
u
C
s
a
i
B
t
u
p
n
I
°
.
x
a
m
,
CA
n
0
5
2
+
.
s
V
t
n
e
r
u
C
e
c
n
e
r
e
f
i
D
t
u
p
n
I
.
x
a
m
,
e
r
u
t
a
r
e
p
m
e
T/
A
n
1
.
0
°C
t
u
p
t
u
O
e
g
a
t
l
o
V
-
t
u
p
t
u
O
d
e
t
a
R
± V
0
1
t
u
p
t
u
O
-
t
n
e
r
u
C
d
e
t
a
R
±
A
m
5
e
s
n
o
p
s
e
R
y
c
n
e
u
q
e
r
F
0
1
=
G
t
a
B
d
3
-
,
h
t
d
i
w
d
n
a
Bz
H
k
0
1
t
u
p
t
u
O
e
c
n
e
r
e
f
e
R
V
+
(
e
u
l
a
V
l
a
n
i
m
o
N
R )V
2
.
2
1
o
t
V
0
.
1
+
.
x
a
m
,
t
n
e
i
c
i
f
e
o
C
e
r
u
t
a
r
e
p
m
e
T
±
/
%
1
0
.
0
°C
V
+
(
y
l
p
u
S
e
g
d
i
r
B
B )
t
n
e
m
t
s
u
j
d
A
f
o
e
g
n
a
RV
0
1
+
o
t
V
4
+
t
n
e
i
c
i
f
e
o
C
e
r
u
t
a
r
e
p
m
e
T
±
/
%
1
0
.
0
°
.
x
a
m
C
e
s
i
o
N
e
g
a
t
l
o
V
t
u
p
t
u
OS
M
R
V
m
1
)
3
.
g
i
F
e
s
(
t
n
e
r
u
C
t
u
p
t
u
OA
m
0
1
+
o
t
0
n
o
i
t
a
l
u
g
e
R
y
l
p
u
S
.
s
V
e
g
a
t
l
o
V
t
u
p
t
u
O
(
DV
B/DVS )
V
/
V
m
1
d
a
o
L
ll
u
F
o
t
d
a
o
L
o
N
,
n
o
i
t
a
l
u
g
e
R.
x
a
m
%
1
0
.
0
r
e
t
r
e
v
n
o
C
F
/
V
e
g
a
t
l
o
V
t
u
p
n
IV
0
1
-
o
t
0
e
c
n
e
d
e
p
m
I
t
u
p
n
Im
h
o
l
i
k
0
1
y
c
n
e
u
q
e
r
F
t
u
p
t
u
Oz
H
k
0
1
o
t
0z
H
k
1
o
t
0
t
n
e
i
c
i
f
e
o
C
e
r
u
t
a
r
e
p
m
e
T
±
m
p
0
1
Q
(
r
o
t
s
i
s
n
a
r
T
t
u
p
t
u
O
t
c
e
r
i
D
1)
V
O
E
C
V
O
B
E
I
C
s
t
l
o
V
5
2
s
t
l
o
V
5
A
m
0
5
Q
(
r
o
t
s
i
s
n
a
r
T
t
u
p
t
u
O
d
e
t
a
l
o
s
I
2)
V
O
E
C
V
O
B
E
V
0
3
V
7
.
A
.
N
.
A
.
N
n
o
i
t
a
p
i
s
i
D
r
e
w
o
P
m
u
m
i
x
a
MW
m
0
5
1.
A
.
N
Q
f
o
r
o
t
c
e
ll
o
C
t
a
h
t
d
i
W
e
s
l
u
P
1
0
8
m
.
p
y
t
S8
m
.
p
y
t
S
n
o
i
t
a
c
i
f
i
c
e
p
S
l
a
r
e
n
e
G
)
s
c
e
p
S
d
e
t
a
R
(
e
g
a
t
l
o
V
y
l
p
u
S
± V
5
1
e
g
n
a
R
e
g
a
t
l
o
V
y
l
p
u
S
±
o
t
4
1
± V
6
1
n
i
a
r
D
t
n
e
r
u
C
t
n
e
c
s
e
i
u
QA
m
0
1
-
d
n
a
A
m
0
3
+
t
n
e
m
n
o
r
i
v
n
E
e
g
n
a
R
e
r
u
t
a
r
e
p
m
e
T0
°
0
7
+
o
t
C
°C
)
s
e
h
c
n
i
(
e
z
i
S"
6
.
0
x
"
2
x
"
2