A
10 Watt NT Single Series DC/DC Converters
2401 Stanwell Drive Concord, California 94520 Ph: 925/687-4411 or 800/542-3355 Fax: 925/687-3333 www.calex.com Email: sales@calex.com
2
3/2001
(6)
The transient response is specified as the time required to settle
from a 50 to 75 % step load change (rise time of step = 2 Sec)
to a 1% error band.
(7)
Dynamic response is the peak overshoot during a transient
as defined in note 6 above.
(8)
The input ripple rejection is specified for DC to 120 Hz ripple with
a modulation amplitude of 1% of Vin.
(9)
The functional temperature range is intended to give an additional
data point for use in evaluating this power supply. At the
low functional temperature the power supply will function with
no side effects, however, sustained operation at the high
functional temperature will reduce expected operational life.
The data sheet specifications are not guaranteed over the
functional temperature range.
(10) The case thermal impedance is specified as the case temperature
rise over ambient per package watt dissipated.
(11) Specifications subject to change without notice.
NOTES
*
All parameters measured at Tc = 25°C, nominal input voltage
and full rated load unless otherwise noted. Refer to the
CALEX Application Notes for the definition of terms,
measurement circuits and other information.
(2)
Noise is measured per CALEX Application Notes. Measurement
bandwidth is 0-20 MHz for peak-peak measurements, 10 kHz to
1 MHz for RMS measurements. Output noise is measured with
a 0.01F / 100V ceramic capacitor in parallel with a 1f / 35V
Tantalum capacitor, 1 inch from the output pins to simulate
standard PCB decoupling capacitance.
(3)
To determine the correct fuse size, see CALEX Application
Notes.
(4)
The Case is tied to the -input pin.
(5)
Short term stability is specified after a 30 minute warmup at full
load, constant line and recording the drift over a 24 hour period.
*
s
r
e
t
e
m
a
r
a
P
t
u
p
n
I
l
e
d
o
MT
N
0
2
.
3
S
2
1T
N
0
2
.
5
S
2
1T
N
0
9
.
2
1
S
2
1T
N
0
7
.
5
1
S
2
1T
N
0
2
.
3
S
4
2T
N
0
2
.
5
S
4
2s
t
i
n
U
e
g
n
a
R
e
g
a
t
l
o
V
N
I
M
X
A
M
9
8
1
8
1
6
3
C
D
V
)
2
(
e
l
p
i
R
d
e
t
c
e
l
f
e
R
P
Y
T0
8
20
4
40
4
10
1
2P
-
P
A
m
P
Y
T0
9
5
4
1
5
4
0
7
S
M
R
A
m
d
a
o
L
ll
u
F
t
n
e
r
u
C
t
u
p
n
I
d
a
o
L
o
N
P
Y
T
P
Y
T
0
1
7
0
7
0
1
7
0
1
2
1
0
6
0
1
5
1
0
4
3
7
0
5
7
A
m
y
c
n
e
i
c
i
f
EP
Y
T8
78
72
83
82
83
8%
y
c
n
e
u
q
e
r
F
g
n
i
h
c
t
i
w
SP
Y
T0
2
2z
H
k
,
e
g
a
t
l
o
v
r
e
v
O
t
u
p
n
I
m
u
m
i
x
a
M
m
u
m
i
x
a
M
s
m
0
1
X
A
M4
25
4C
D
V
,
e
m
i
T
n
o
-
n
r
u
T
r
o
r
E
t
u
p
t
u
O
%
1
P
Y
T6
s
m
e
s
u
F
d
e
d
n
e
m
o
c
e
R
)
3
(S
P
M
A
l
e
d
o
MT
N
0
9
.
2
1
S
4
2T
N
0
7
.
5
1
S
4
2T
N
0
2
.
3
S
8
4T
N
0
2
.
5
S
8
4T
N
0
9
.
2
1
S
8
4T
N
0
7
.
5
1
S
8
4s
t
i
n
U
e
g
n
a
R
e
g
a
t
l
o
V
N
I
M
X
A
M
8
1
6
3
6
3
2
7
C
D
V
)
2
(
e
l
p
i
R
d
e
t
c
e
l
f
e
R
P
Y
T0
1
20
0
10
5
1P
-
P
A
m
P
Y
T0
75
3
0
5
S
M
R
A
m
d
a
o
L
ll
u
F
t
n
e
r
u
C
t
u
p
n
I
d
a
o
L
o
N
P
Y
T
P
Y
T
0
3
5
0
1
0
1
5
0
1
0
7
1
6
0
6
2
6
0
7
2
6
0
6
2
6
A
m
y
c
n
e
i
c
i
f
EP
Y
T5
86
80
81
83
84
8%
y
c
n
e
u
q
e
r
F
g
n
i
h
c
t
i
w
SP
Y
T0
2
2z
H
k
,
e
g
a
t
l
o
v
r
e
v
O
t
u
p
n
I
m
u
m
i
x
a
M
m
u
m
i
x
a
M
s
m
0
1
X
A
M5
45
8C
D
V
,
e
m
i
T
n
o
-
n
r
u
T
r
o
r
E
t
u
p
t
u
O
%
1
P
Y
T6
s
m
e
s
u
F
d
e
d
n
e
m
o
c
e
R
)
3
(S
P
M
A
l
e
d
o
M
T
N
0
5
1
.
5
S
8
4s
t
i
n
U
e
g
n
a
R
e
g
a
t
l
o
V
N
I
M
X
A
M
0
2
0
6
C
D
V
)
2
(
e
l
p
i
R
d
e
t
c
e
l
f
e
R
P
Y
T0
3
1P
-
P
A
m
P
Y
T0
4S
M
R
A
m
d
a
o
L
ll
u
F
t
n
e
r
u
C
t
u
p
n
I
d
a
o
L
o
N
P
Y
T
P
Y
T
0
2
6
A
m
y
c
n
e
i
c
i
f
EP
Y
T8
7%
y
c
n
e
u
q
e
r
F
g
n
i
h
c
t
i
w
SP
Y
T0
2
2z
H
k
,
e
g
a
t
l
o
v
r
e
v
O
t
u
p
n
I
m
u
m
i
x
a
M
m
u
m
i
x
a
M
s
m
0
1
X
A
M2
7C
D
V
,
e
m
i
T
n
o
-
n
r
u
T
r
o
r
E
t
u
p
t
u
O
%
1
P
Y
T6
s
m
e
s
u
F
d
e
d
n
e
m
o
c
e
R
)
3
(S
P
M
A