參數(shù)資料
型號: PIC16C765/JW
廠商: Microchip Technology
文件頁數(shù): 15/165頁
文件大?。?/td> 0K
描述: IC MCU EPROM 8KX14 USB 40CDIP
標準包裝: 10
系列: PIC® 16C
核心處理器: PIC
芯體尺寸: 8-位
速度: 24MHz
連通性: SCI,UART/USART,USB
外圍設備: 欠壓檢測/復位,POR,PWM,WDT
輸入/輸出數(shù): 33
程序存儲器容量: 14KB(8K x 14)
程序存儲器類型: EPROM,UV
RAM 容量: 256 x 8
電壓 - 電源 (Vcc/Vdd): 4.35 V ~ 5.25 V
數(shù)據(jù)轉(zhuǎn)換器: A/D 8x8b
振蕩器型: 外部
工作溫度: 0°C ~ 70°C
封裝/外殼: 40-CDIP(0.600",15.24mm)窗口
包裝: 管件
配用: 444-1001-ND - DEMO BOARD FOR PICMICRO MCU
2000 Microchip Technology Inc.
Preliminary
DS41124C-page 111
PIC16C745/765
13.9
Power-Down Mode (SLEEP)
Power-down mode is entered by executing a SLEEP
instruction.
If enabled, the WDT will be cleared but keeps running,
the PD bit (STATUS<3>) is cleared, the TO (STA-
TUS<4>) bit is set, and the oscillator driver is turned off.
The I/O ports maintain the status they had, before the
SLEEP
instruction was executed (driving high, low, or
hi-impedance).
For lowest current consumption in this mode, place all
I/O pins at either VDD or VSS, ensure no external cir-
cuitry is drawing current from the I/O pin, power-down
the A/D, and disable external clocks. Pull all I/O pins
that are hi-impedance inputs, high or low externally, to
avoid switching currents caused by floating inputs. The
T0CKI input should also be at VDD or VSS for lowest
current consumption. The contribution from on-chip
pull-ups on PORTB should be considered.
The MCLR pin must be at a logic high level (VIHMC).
13.9.1
WAKE-UP FROM SLEEP
The device can wake up from SLEEP through one of
the following events:
1.
External RESET input on MCLR pin.
2.
Watchdog Timer Wake-up (if WDT was enabled).
3.
Interrupt from INT pin, RB port change or some
Peripheral Interrupts.
External MCLR Reset will cause a device RESET. All
other events are considered a continuation of program
execution and cause a “wake-up”. The TO and PD bits
in the STATUS register can be used to determine the
cause of device RESET. The PD bit, which is set on
power-up, is cleared when SLEEP is invoked. The TO
bit is cleared if a WDT time-out occurred (and caused
wake-up).
The following peripheral interrupts can wake the device
from SLEEP:
1.
TMR1 interrupt. Timer1 must be operating as an
asynchronous counter.
2.
USB interrupt.
3.
CCP capture mode interrupt.
4.
Parallel slave port read or write (PIC16C765
only).
5.
A/D conversion (when A/D clock source is dedi-
cated internal oscillator).
6.
USART TX or RX (Synchronous Slave mode).
Other peripherals cannot generate interrupts, since
during SLEEP, no on-chip Q clocks are present.
When the SLEEP instruction is being executed, the next
instruction (PC + 1) is pre-fetched. For the device to
wake-up through an interrupt event, the corresponding
interrupt enable bit must be set (enabled). Wake-up is
regardless of the state of the GIE bit. If the GIE bit is
clear (disabled), the device continues execution at the
instruction after the SLEEP instruction. If the GIE bit is
set (enabled), the device executes the instruction after
the SLEEP instruction and then branches to the inter-
rupt address (0004h). In cases where the execution of
the instruction following SLEEP is not desirable, the
user should have a NOP after the SLEEP instruction.
13.9.2
WAKE-UP USING INTERRUPTS
When global interrupts are disabled (GIE cleared) and
any interrupt source has both its interrupt enable bit
and interrupt flag bit set, one of the following will occur:
If the interrupt occurs before the execution of a
SLEEP
instruction, the SLEEP instruction will com-
plete as a NOP. Therefore, the WDT and WDT
postscaler will not be cleared, the TO bit will not
be set and PD bit will not be cleared.
If the interrupt occurs during or after the execu-
tion of a SLEEP instruction, the device will imme-
diately wake up from sleep. The SLEEP
instruction will be completely executed before the
wake-up. Therefore, the WDT and WDT
postscaler will be cleared, the TO bit will be set
and the PD bit will be cleared.
Even if the flag bits were checked before executing a
SLEEP
instruction, it may be possible for flag bits to
become set before the SLEEP instruction completes. To
determine whether a SLEEP instruction executed, test
the PD bit. If the PD bit is set, the SLEEP instruction
was executed as a NOP.
To ensure that the WDT is cleared, a CLRWDT instruc-
tion should be executed before a SLEEP instruction.
745cov.book Page 111 Wednesday, August 2, 2000 8:24 AM
相關PDF資料
PDF描述
PIC16LF1823-I/ML IC MCU 8BIT FLASH 16QFN
PIC16C745/JW IC MCU EPROM8KX14 USB A/D 28CDIP
PIC16F723A-I/SS MCU PIC 7KB FLASH XLP 28-SSOP
PIC12C508A-04/SN IC MCU OTP 512X12 8SOIC
PIC12C509A-04/SM IC MCU OTP 1KX12 8-SOIJ
相關代理商/技術參數(shù)
參數(shù)描述
PIC16C765T-I/L 功能描述:8位微控制器 -MCU 14KB 256 RAM 33 I/O RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時鐘頻率:50 MHz 程序存儲器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風格:SMD/SMT
PIC16C765T-I/PT 功能描述:8位微控制器 -MCU 14KB 256 RAM 33 I/O RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時鐘頻率:50 MHz 程序存儲器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風格:SMD/SMT
PIC16C76T-04/SO 功能描述:8位微控制器 -MCU 14KB 368 RAM 22 I/O RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時鐘頻率:50 MHz 程序存儲器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風格:SMD/SMT
PIC16C76T-04E/SO 功能描述:8位微控制器 -MCU 14KB 368 RAM 22 I/O RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時鐘頻率:50 MHz 程序存儲器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風格:SMD/SMT
PIC16C76T-04I/SO 功能描述:8位微控制器 -MCU 14KB 368 RAM 22 I/O RoHS:否 制造商:Silicon Labs 核心:8051 處理器系列:C8051F39x 數(shù)據(jù)總線寬度:8 bit 最大時鐘頻率:50 MHz 程序存儲器大小:16 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:1.8 V to 3.6 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:QFN-20 安裝風格:SMD/SMT