
128Mb: x16, x32
MOBILE SDRAM
09005aef8071a76b
Micron Technology, Inc., reserves the right to change products or specifications without notice.
128Mbx16x32Mobile_2.fm - Rev. G (DRAFT) 7/04 EN
41
2001 Micron Technology, Inc. All rights reserved.
7. READs or WRITEs to bank m listed in the Command (Action) column include READs or WRITEs with auto precharge
enabled and READs or WRITEs with auto precharge disabled.
8. CONCURRENT AUTO PRECHARGE: Bank n will initiate the auto precharge command when its burst has been interrupted
by bank m’s burst.
9. Burst in bank n continues as initiated.
10. For a READ without auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will
interrupt the READ on bank n, CAS latency later
(Figure 14).
11. For a READ without auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will
interrupt the READ on bank n when registered
(Figure 16 and
Figure 17). DQM should be used one clock prior to the
WRITE command to prevent bus contention.
12. For a WRITE without auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will
interrupt the WRITE on bank n when registered
(Figure 24), with the data-out appearing CAS latency later. The last valid
WRITE to bank n will be data-in registered one clock prior to the READ to bank m.
13. For a WRITE without auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank will
interrupt the WRITE on bank n when registered
(Figure 22). The last valid WRITE to bank n will be data-in registered one
clock prior to the READ to bank m.
14. For a READ with auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will
interrupt the READ on bank n, CAS latency later. The PRECHARGE to bank n will begin when the READ to bank m is reg-
15. For a READ with auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will
interrupt the READ on bank n when registered. DQM should be used two clocks prior to the WRITE command to prevent
bus contention. The PRECHARGE to bank n will begin when the WRITE to bank m is registered (
Figure 32).
16. For a WRITE with auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will
interrupt the WRITE on bank n when registered, with the data-out appearing CAS latency later. The PRECHARGE to
bank n will begin after tWR is met, where tWR begins when the READ to bank m is registered. The last valid WRITE bank
n will be data-in registered one clock prior to the READ to bank m
(Figure 33).
17. For a WRITE with auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will
interrupt the WRITE on bank n when registered. The PRECHARGE to bank n will begin after tWR is met, where tWR
begins when the WRITE to bank m is registered. The last valid WRITE to bank n will be data registered one clock to the